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Abstract—Augmented reality (AR) has emerged as a promising
solution for freehand ultrasound visualization and guidance in
interventional and diagnostic procedures. However, the reliance
on cumbersome wired tracking systems often restricts flexibility,
and existing AR-based ultrasound navigation systems have track-
ing errors that limit deployment in high-precision applications.
To overcome these limitations, we introduce the first known
fully wireless AR ultrasound system that leverages simultaneous
localization and mapping algorithms to accurately and efficiently
track ultrasound probe locations. We additionally introduce a
calibration method that iteratively refines the transformation
between the ultrasound probe and the tracker. Our novel system
achieves a reprojection error (i.e., mean distance between the
same points on two intersecting ultrasound slices in a volume,
when projected to the same coordinate system) of 0.983 mm.
Results are promising to provide a new, wireless approach to
intraoperative assessments, surgical training, and image-guided
interventions.

Index Terms—Ultrasound, Augmented reality, Surgical guid-
ance

I. INTRODUCTION

Ultrasound imaging is ubiquitous in modern healthcare,
offering real-time, non-invasive visualization for minimally
invasive diagnostic and interventional procedures. However,
effectiveness can be limited in remote or resource-limited
regions and complex surgical settings, as traditional interven-
tional ultrasound systems rely on wired connections [1], re-
quire external tracking equipment [2]-[4], and demand mental
mapping of 2D ultrasound images to 3D anatomical structures
[5].

The integration of augmented reality (AR) with ultrasound
imaging has emerged as a promising solution to enhance
spatial understanding and procedure guidance [6]-[8]. Recent
advances in AR technology, particularly in simultaneous local-
ization and mapping (SLAM), have created new opportunities
to overcome traditional limitations in ultrasound image visual-
ization, including real-time spatial alignment of imaging data
with patient anatomy, improved depth perception for procedu-
ral guidance, and the integration of multimodal medical data
in AR environments [9], [10]. These developments coincide
with growing interest in wireless medical devices, which offer
greater flexibility and improved sterility control in surgical
environments.

Despite technological advances in self-localization of AR
devices, current solutions depend on complicated external

tracking systems, which can be cumbersome in clinical set-
tings and require additional setup time [11]. Although AR-
based marker tracking systems obviate the need for external
tracking devices, tracking accuracy is often degraded by image
resolution and varied lighting conditions [12]. In addition, the
calibration between tracking systems and imaging devices can
be challenging when attempting to achieve accurate spatial
registration between virtual and real-world elements [13].
Contrasting these challenges with the benefits of ultrasound-
guided procedures, a wireless AR-ultrasound system has the
potential to enhance efficiency and accuracy.

The work herein presents the first known application of
AR-guided wireless ultrasound. We utilize existing SLAM
modules from an AR device to track a wireless ultrasound
probe without any external markers. This approach enhances
flexibility by eliminating wired connections, costly optical
tracking cameras, or suboptimal tracking markers that limit
clinical viability in traditional AR-based ultrasound-guided
interventional procedures. In addition, we propose a novel
optimization-based pose refinement method that can be applied
to any imaging anatomy, extending beyond the use of a
calibration phantom. We demonstrate the feasibility using a
human skull.

II. METHODS

A. Framework

A wireless ultrasound probe (Clarius C3HD, Vancouver,
Canada) was used to acquire 2D ultrasound slices. An AR
device (Magic Leap 2, Plantation, Florida, USA) was utilized
to visualize and track the 3D pose of the AR device controller.
This controller was securely attached to the ultrasound probe
with a custom 3D-printed component (see Fig. 1), enabling
probe tracking through the calibration method described in
Section II-C.

Data transmission between the server, a computer running
a Python script, and the wireless ultrasound probe was im-
plemented using TCP/IP via the PLUS Toolkit [14], which is
an open-source library for data communication among image-
guided interventional systems. A Unity application (version
2022.3.21f1) was developed to transmit the pose data of the
AR device controller to the server, where the pose data were
synchronized with the ultrasound image data.
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Fig. 1. Major components, coordinate frames and transformations of the proposed system. P; is the i-th point in the indicated coordinate frame: world (W),

controller (C), image (I), or computed tomography of the skull (CT).

B. Coordinate transformations

The coordinate transformations of the system, illustrated in
Fig. 1, convert 2D ultrasound image pixels, PP, of the i-th

1
frame into a global world coordinate system, P}’V, as follows:
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where F}V¢ is the transformation matrix from the controller
to world coordinate (consisting of a rotation matrix RV and
a translation vector tWC), FCT is the transformation from the
image to controller coordinates (consisting of rotation R’ and
translation t¢1), FIP is the transformation matrix that converts
points from the image pixel space to physical coordinates
(consisting of scale factors s, and s, in the lateral and axial
dimensions, which are both 0.362 mm/pixel), and PZ-P is a
point in the pixel coordinate of the ¢-th frame in homogeneous
form. In Eq. 1, a 3D pixel (x,y,z) is extended to (x,y,z,1) as

PP or PV to enable linear transformations using matrices

FWVC FC! and FIP. In addition, P” lies on the set {(x, y,0,
1) €e R* | z € {0,1,2,...,639},y € {0,1,2,...,479}}.
The third dimension of P!, representing the elevation axis
of the ultrasound probe, is assigned an arbitrary constant
value of zero to convert each 2D image coordinate into a
4D homogeneous coordinate, which allows F/V¢ and F¢!
to be represented as 4x4 matrices incorporating rotation and
translation.

C. Flexible online calibration

Calibration was performed using the concept of a repro-
jection error, which is the mean Euclidean distance between
corresponding point pairs on two intersecting slices, as illus-
trated in Fig. 2. For each slice in a pair of intersecting 2D
slices, the pixel intensity profile along the intersection was
computed. The position of the first pixel on the intersection
line with an intensity value greater than 200 (out of 255) was
identified in each slice and mapped to the world coordinate
system. Ideally, these points should coincide if the calibration
is correct, resulting in a perfectly tracked probe.

The transformation (in its Lie algebra representation [15])
between the image and controller coordinate systems was
optimized with the proposed differentiable reprojection error
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Fig. 2. Reprojection error illustrations.

as a loss function, using the first-order Adam optimizer in
PyTorch [16]:
FOI* = argmin L(FCT) 3)
FCI

The learning rate was 0.01 for rotation and 0.001 for transla-
tion.

D. Volumetric Reconstruction

A button on the AR controller was programmed to syn-
chronously transmit pose and image data only when pressed.
This action also automatically defined the region of interest
(ROJ) in the physical scene, filtering out any images that did
not capture the ROI. Unlike existing volumetric reconstruc-
tion toolboxes [17], manual offline ROI selection in image
processing software on a computer was not required.

With an elevation slice thickness of 1 mm, 2D ultrasound
slices were spatially registered to the global world coordinate
using the transformations in Eq. 1. The reconstructed vol-
umetric images had dimensions of 256 x 256 x 256, with
voxel sizes varying from 0.3 mm to 0.8 mm, based on the
frame rate and scanning field of view. To address gaps in
the reconstructed volume, linear interpolation was applied to
estimate the intensities of missing voxels. The volumetric
images of a skull that was cleaned from tissue attachments
(The Phantom Laboratory, Salem, NY, USA), as reported in
[18], were visualized using Amira software (Visage Imaging,
San Diego, CA, USA).

III. RESULTS & DISCUSSION

Fig. 3 shows an example result pair of the physical setup and
the corresponding digital twin, as well as a photograph from a
camera placed behind the AR device lens to demonstrate the
fusion between a physical and digital twin when viewed from
the perspective of a user. Ultrasound images were rendered in
the AR application and registered with the real world. The
visualization frame rate was 26 Hz, and the average data
transmission latency between the server and the AR device
was 57 ms.

Fig. 4 shows the reconstructed volumetric ultrasound images
of the skull rendered as shaded meshes and compared with
the corresponding computed tomography scan as the ground
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Fig. 3. The real-world physical setup co-registered with virtual elements of
the ultrasound slice, X-ray CT, probe, and controller. The AR device processes
virtual elements that are overlaid onto the real world when viewed through
the AR lens.

truth. Table I reports the reprojection errors obtained with the
skull, compared with state-of-the-art AR ultrasound systems
employing different tracking methods with internal sensors.
Although the specific contexts of reprojection errors vary
across the studies reported in Table I [9], [10], [19], each
quantifies the average distance between corresponding points
within a defined coordinate system. Our proposed differen-
tiable optimization method has the lowest reprojection error.

The mean reprojection error produced by our method, which
integrates optimization-based online calibration with an SLAM
module, outperforms state-of-the-art approaches that similarly
rely on the built-in sensors within an AR device (i.e., the
integrated RGB camera [10], [19] or depth camera [9]), as
summarized in Table I. In addition, the wireless feature of
the ultrasound probe is anticipated to enhance flexibility and
simplify the ability of users to maintain direct sight of the

Fig. 4. Co-registered 3D ultrasound (gray) and CT (yellow) images from two
views.

TABLE I
MEAN REPROJECTION ERROR OF THE PROPOSED APPROACH (OBTAINED
WITH THE SKULL), COMPARED WITH PREVIOUS STATE-OF-THE-ART

APPROACHES
Reprojection Tracking Connection
error (mm) method
Cattari er al. [10] 2.02 RGB marker Wired
Haxthausen et al. [9] 2.81 IR marker Wired
Nguyen et al. [19] 1.19-3.02 ArUco markers Wired
Proposed 0.983 SLAM Wireless




SLAM module. The inclusion of an inertial measurement unit
within the SLAM module enables accurate tracking, even
when the controller is temporarily out of direct sight or under
suboptimal lighting conditions. In contrast, visual markers
require a constant line of sight, which is not always feasible
in clinical environments.

IV. CONCLUSION

This work is the first to demonstrate wireless and marker-
free volumetric ultrasound system, visualized and registered by
an AR headset. By leveraging the robust tracking capabilities
of the Magic Leap 2 controller, the wireless data transmission
of the Clarius probe, and our novel differentiable calibration
method, this system achieves a mean reprojection error <1
mm. This system holds promise for surgical procedures such
as intraoperative assessment, surgical training, and biopsies.
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