
Amplitude-Aware Deep Learning-Based Tool Tip
Localization in Raw Photoacoustic Channel Data

Nethra Venkatayogi*, Muyinatu A. Lediju Bell* † ‡

*Department of Computer Science, Johns Hopkins University, Baltimore, MD
†Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD

‡Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD

Abstract—Photoacoustic imaging is a promising modality for
real-time surgical guidance to visualize critical structures dur-
ing minimally invasive procedures. Deep learning-based visual
servoing systems utilizing raw photoacoustic channel data have
successfully tracked catheter tips in cardiac interventions. How-
ever, existing deep learning methods prioritize the proximal wave-
form and risk decreased generalizability due to low-amplitude
artifacts. Therefore, we present an approach that leverages
amplitude-aware training to improve surgical tool tip localization
using raw photoacoustic channel data. A Faster R-CNN network
was trained on 20,000 k-Wave-simulated frames and tested with
experimental data. The system achieved a mean absolute tracking
error of 0.42 mm and 0.91 mm in the axial and lateral image
dimensions, respectively, with a frame rate of 10.9 Hz, which
is compatible with our 10 Hz laser pulse repetition frequency.
The proposed system promises to provide real-time guidance to
track surgical tool tips while minimizing erroneous detections
from low-amplitude signals and artifacts in multiple locations.

Index Terms—Deep learning, Photoacoustic imaging, Surgical
tool tracking system, Surgical guidance

I. INTRODUCTION

Photoacoustic imaging is a promising modality for real-time
surgical guidance to visualize critical anatomical structures
during minimally invasive procedures [1], [2]. Photoacoustic
imaging, based on the photoacoustic effect, utilizes pulsed
laser light to excite optically absorbing chromophores, result-
ing in thermal expansion and the generation of an acoustic
wave received by a standard ultrasound transducer. Potential
applications of photoacoustic image guidance in minimally
invasive interventional procedures include tool tracking in
spinal surgeries [3], [4], photoacoustic-guided teleoperative
robotic surgeries [5], [6], guidance of minimally invasive
neurosurgeries [7]–[9], tumor boundary delineation [10], [11],
large vessel tracking during liver procedures [12], and mon-
itoring of the proximity of tools to critical areas of interest
during hysterectomies [13].

Photoacoustic imaging has demonstrated particular success
in cardiac interventions, where deep learning approaches uti-
lizing raw photoacoustic channel data enable visual servoing
systems to track catheter tips in real-time [14]–[18]. These
systems detect catheter tips through a deep learning point
source localization model trained on simulated images of 0.1
mm-diameter point sources. The translation of these visual
servoing and localization systems from tracking smaller (e.g.,
catheter tips) to larger (e.g., cautery devices, drill bits, da Vinci
surgical instruments, ureters, uterine arteries) imaging targets

presents unique challenges due to varying target geometries
and complex acoustic environments [5], [6], [13], [19].

Existing photoacoustic-based visual servoing systems face
two critical limitations that restrict their broader surgical
applicability. First, current methods prioritize the most prox-
imal waveform detected in photoacoustic channel data im-
ages, operating under the assumption that reflection artifacts
will appear distal to the true source location [18], [20].
This assumption fails in complex surgical environments as
shape distortion arising from elevational displacements and
out-of-plane absorbers can lead to false positive detections
of the source. Second, low-amplitude artifacts surrounding
photoacoustic sources can decrease system generalizability
across different surgical scenarios and between simulation and
experimental conditions.

We hypothesize that incorporating amplitude-aware training
into existing photoacoustic-based visual servoing systems will
improve the identification and tracking of surgical tool tips in
real time. Low-amplitude, proximal artifacts selected as the
source are expected to be reduced with this approach. This
reduction is expected to improve the correct identification of
source waveforms.

In this paper, we present the development and validation
of an amplitude-aware photoacoustic tracking system with
the creation of a model trained on a simulated dataset of
sources and reflection artifacts differentiated by amplitude.
In addition to amplitude-aware training, the signal amplitude
at the predicted waveform peak location was utilized to
compute a weighted sum of model confidence score and signal
amplitude to confirm the tool prediction and choose among
multiple possible detections. We then present experimental
validation using robot-controlled tool motions to evaluate
tracking performance, compared to our previously existing
point source localization model.

II. METHODS

A. Simulated datasets for training and validation

We simulated photoacoustic channel data images using k-
Wave to create a dataset for model training and validation
(similar to the method presented in [14], [16]). The ranges
and increment sizes of the simulation variables are listed in
Table I. Each simulation consisted of a 0.1 mm-diameter point
source in a two-dimensional simulation grid consisting of a
homogeneous medium, with lateral and axial dimensions of



TABLE I
RANGES AND INCREMENT SIZES OF PARAMETERS USED TO GENERATE

SIMULATED DATASETS

Parameters Min Max Increment

Speed of Sound [m/s] 1440 1640 6
Axial Position (mm) 20 100 0.2

Lateral Position (mm) -74.3 74.3 0.1
Number of Sources 1 1 -

Number of Ref. Artifacts 0 1 Random
Channel SNR (dB) -5 2 Random

Source and Ref. Artifact Diameter (mm) 0.9 2.1 Random
Source Amplitude 0.7 1.1 Random

Ref. Artifact Amplitude (95% of instances) 0.01 0.5 Random
Ref. Artifact Amplitude (5% of instances) 0.77 1.05 Random

97 mm and 122 mm, respectively. To generate sources with
diameters that were more representative of surgical tool tips
as opposed to catheter tips, we superposed stored simulated
outputs at axially varied positions to create sources with
diameters of 0.9-2.1 mm.

Reflection artifacts were created using the method previ-
ously presented in [21] (i.e., waveforms originating from pho-
toacoustic sources were axially downshifted by the Euclidean
distance between an actual source and the source representing
the artifact). We simulated a discrete ultrasound probe model
with a sampling frequency of 11.88 MHz, an aperture of
64 elements, an element width of 0.25 mm, and an inter-
element spacing of 0.05 mm. These parameters were selected
to match the specifications of the Verasonics P4-2v probe
[22]. To incorporate amplitude-awareness into training, source
and artifact amplitude scaling factors ranged from 0.7-1.1 and
0.01-0.5, respectively. A subset (i.e., 5%) of reflection artifacts
were scaled to be brighter than the source in the image and had
an amplitude range of 0.77-1.05. Gaussian noise was added to
the resulting raw photoacoustic channel data frame using the
addNoise function in the k-Wave toolbox [23].

As with previous implementations of phased array
transducer-based point source localization systems [14], [15],
[17], [24], [25], each raw channel data frame was zero-padded
to match the field-of-view of a scan-converted photoacoustic
image to form a zero-padded channel data frame of dimensions
565×926 pixels. The image was then laterally upsampled by
a factor of 2 to form a final channel data frame of dimensions

1130x926 pixels. These zero-padded channel data frames were
annotated using the method presented by Gubbi et al. [15] with
class information (i.e., “source” or “artifact”) and bounding
boxes of dimensions 32×16 pixels centered on the positions
of sources and artifacts to form annotated images. The total
dataset included 20,000 photoacoustic channel data frames
from which annotated images were randomly separated into
training (80%) and validation (20%) datasets.

B. Network Architecture and Training Procedure

The Detectron-2 platform [26] was utilized for training and
validation. A Faster R-CNN network [27] with a ResNet-101
[28] feature extractor was initialized with pre-trained weights
from the ImageNet dataset [29] then fine-tuned for 80000
iterations with a batch size of 4 and a base learning rate
of 1 × 10−3 on an NVidia (Santa Clara, California) Titan X
(Pascal) GPU. The network was trained to detect and classify
each waveform in the input photoacoustic channel data frame
as a source or reflection artifact and position a bounding box
around the peak of the detected waveform. If the peak was
not visible in the photoacoustic channel data when the lateral
location of the source or artifact resided in the zero-padded
region, the network was required to classify the waveform and
extrapolate the position of its peak using the visible portion
of the waveform present in the input channel data frame.
For each input image, the network outputs consisted of the
identified class (i.e., source or artifact), the object location
(i.e., bounding box pixel coordinates), and a confidence score
(0-1), as summarized in Fig. 1.

After training, the network performed inference on input
images at an average rate of 0.092 s per image, translating to
an achievable frame rate of 10.9 Hz for real-time photoacoustic
tool localization. Similar to [14], for robustness, the estimated
tool tip were compared across five consecutive frames. If the
tool tip was visible in each frame with a confidence score >
0.7, and the estimated position of the tool tip did not change by
more than 1 cm across 5 frames, then the location estimate was
labeled as valid. To implement amplitude-aware localization
when there were multiple tool tip detections, a weighted sum
based on 0.4 times the confidence score and 0.6 times the
signal amplitude at the bounding box location was used to
select the tool tip position. If signal amplitude was 0 (i.e.,

Fig. 1. Summary of model architecture and workflow.



Fig. 2. Experimental setup for model testing.

the detected peak was in the zero-padded region), only the
confidence score was used to determine the tool tip position.

C. Experimental data for testing

To test our network, our experimental set up consisted of
a Vantage 128 ultrasound scanner (Verasonics Inc., Kirkland,
WA, USA), a Verasonics P4-2v phased array ultrasound probe,
a Phocus Mobile laser (Opotek, Carlsbad CA, USA) emitting
5 ns pulses at a rate of 10 Hz with wavelength of 750 nm,
and a 1-to-7 fiber splitter [30], as shown in Fig. 2. A custom
designed, 3-D printed fiber holder (described in [6]) secured
the seven output fibers to surround the da Vinci curved scissor
tool. The tool tip was extended from the fiber holder tip by 5
mm to illuminate the tool tip. The tool was affixed to the end
effector of a UR5e robot arm (Universal Robots, Denmark),
using a 3D-printed holder. A water bath in a glass beaker
was used to perform controlled tool motions. The lateral,
elevation, and axial dimensions of the P4-2v ultrasound probe
were aligned with the x-, y-, and z-dimensions of the robot by
moving the tool tip (attached to the robot end effector) to fixed
positions and localizing the tool tip in photoacoustic images.
The transducer remained fixed throughout experiments.

The robot was commanded to perform seven back-and-forth
tool translations, across the lateral image dimension, spanning
38 mm per direction. Each motion was performed at 9 mm/s
velocity. This velocity was determined based on maximum
expected velocities of 17.26 mm/s (axial) and 10.68 mm/s
(lateral), determined from tool motions performed by a board-
certified gynecological surgeon during an open procedure
performed on a human cadaver [19]. Robot positions were
published at a rate of 500 Hz to the Robot Operating System
(ROS) topic /tf, and corresponding photoacoustic channel data
were published to the same topic at the data acquisition rate
of 10 Hz. The closest robot position to each channel data
acquisition were correlated, resulting in corresponding robot
and photoacoustic-based tool displacements. The transforma-
tion between the robot base and the tool tip was determined
by constructing directed acyclic graphs from the /tf messages.

The resulting photoacoustic-based (pi) and robot-based (ri)
tool displacements were used to determine the motion tracking
error. In particular, the mean absolute error (MAE) was
determined, per lateral (x) or axial (z) dimension, as:

MAE =
1

n

n∑
i=1

|pi − ri| (1)

where n is the number of corresponding robot and
photoacoustic-based tool displacements per programmed robot
trajectory. The standard deviation of the absolute error was
also calculated along the x and z dimensions. If no tool tip
was detected based on the above conditions, tool positions
were excluded from comparison with robot displacements.
Frames without a detected tool tip based on the above con-
ditions were excluded from comparison with robot displace-
ments. For comparison, results from a point-source localiza-
tion model trained on 0.1 mm-diameter point sources without
amplitude-awareness, referred to as Faster R-CNN Model, are
presented, while the proposed network model is referred to as
the Amplitude Aware Faster R-CNN Model.

III. RESULTS AND DISCUSSION

Fig. 3 compares Faster R-CNN and Amplitude Aware Faster
R-CNN detections on experimental channel data images and
delay-and-sum beamformed images. Faster R-CNN detects a
low-amplitude proximal artifact as a source, while Amplitude
Aware Faster R-CNN correctly localizes the source at the ∼40
mm expected depth. In addition, the Amplitude Aware Faster
R-CNN correctly identifies the tool despite multiple signals
in the beamformed images, overcoming a key limitation of
non-deep learning-based, amplitude-based tool tip tracking
methods using beamformed images [18].

Across 1824 photoacoustic images, the Amplitude Aware
Faster R-CNN achieved MAEs of 0.42 mm and 0.91 mm in
the axial and lateral dimensions, respectively. The associated
rejection rate (i.e., percentage of excluded frames without a
detected tool tip based on the conditions reported in Section
II-C) was 1.32% (i.e., 24 out of 1824 frames). The Faster R-
CNN achieved MAEs of 4.42 mm and 3.03 mm in the axial

Fig. 3. Visualization of Faster R-CNN and Amplitude Aware Faster R-
CNN outputs on Channel Data and Delay-and-Sum Beamformed Images.
In beamformed images, artifact predictions are omitted to highlight source
localization.



and lateral dimensions, respectively, with a rejection rate of
90.84% (i.e., 1657 out of 1824 frames) when validity checks
were applied. Removing the motion validity constraint reduced
the rejection rate to 2.41% (i.e., 44 out of 1824 frames).
However, the MAEs increased to 1.78 mm and 1.80 mm
in the axial and lateral dimensions, respectively, when these
constraints were removed, resulting in an increase by factors
of 4.24 and 1.98, respectively, relative to that achieved with
the Amplitude Aware Faster R-CNN.

IV. CONCLUSION

This work is the first to utilize amplitude-aware training to
detect surgical tool tips in photoacoustic channel data. By in-
corporating amplitude information, the model achieves MAEs
of 0.42 and 0.91 mm in the axial and lateral dimensions, which
are 4.24x and 1.98x lower, respectively, than those achieved
with Faster R-CNN. The enhanced tool tip localization with the
Amplitude Aware Faster R-CNN indicates strong potential to
improve existing photoacoustic-based visual servoing systems
by minimizing erroneous detections caused by low-amplitude
signals and artifacts. Future work will extend this approach to
detect multiple sources simultaneously (e.g., both the surgical
tool tip and ureter to assist with preventing accidental ureteral
injuries during hysterectomies). Model fine-tuning may also be
performed on experimental data and model validation could be
further verified with human cadaver studies.
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