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Abstract—Second-order ultrasound elastography (SOUL) is
a regularized speckle-tracking algorithm with demonstrated
promise to produce high-quality strain images. SOUL optimizes
a cost function that consists of a data fidelity term and a regular-
ization term. However, SOUL manually selects its regularization
weights to generate strain images, which limits its efficiency and
usability by making it highly user-dependent. We developed a
deep learning approach to autonomously select the regularization
weights required to reduce user dependency. A convolutional
neural network (CNN) was trained on simulated datasets and
fine-tuned using phantom data to classify a strain image to be
acceptable or unacceptable and predict optimal parameters based
on the strain image quality. When evaluated on simulated and
public phantom datasets, the CNN achieved 100.00% recall with
F1 scores ≥95%. Strain images from manual and automated
tuning showed similar smoothness and contrast, highlighting
the potential to eliminate manual SOUL parameter selection.
The CNN-based autonomous selector reduces user dependence,
enabling optimal strain imaging for inexperienced users and
clinicians.

Index Terms—Ultrasound strain elastography, speckle-
tracking, deep learning, convolutional neural network, au-
tonomous parameter selection

I. INTRODUCTION

Ultrasound elastography [1], [2] is a non-invasive imaging
technique that assesses tissue stiffness to support the diagnosis
of various conditions (e.g., tumors, cancers, benign lesions,
cysts), based on the assumption that pathological tissues show
altered mechanical properties from healthy tissue. To imple-
ment strain elastography with manual palpations, a handheld
probe applies compression to the tissue of interest while
acquiring beamformed ultrasound radiofrequency (RF) data.
A speckle-tracking algorithm estimates the tissue displacement
between pre- and post-compression RF frames, which is then
spatially differentiated to produce a strain map. This technique
has been applied in clinical applications that include breast
imaging [3], [4], liver fibrosis staging [5], and cardiovascular
health assessments [6].

Accurate displacement tracking between pre- and post-
deformed ultrasound frames is required to generate high-
quality strain images in ultrasound elastography [7]. How-
ever, this task is inherently ill-posed due to the nature of
ultrasound data (e.g., numerous samples exhibit identical am-
plitudes, shared characteristics, and similar patterns) [4]. To
overcome this challenge, window-based displacement tracking

algorithms [8], [9] divide ultrasound frames into multiple data
windows and impose the constraint that all samples within
a window share the same displacement. Based on this as-
sumption, these methods estimate displacement by identifying
the best-matching post-deformation window using normalized
cross-correlation [10], [11] or zero-phase-crossing [12], [13].
While relatively straightforward to implement, window-based
algorithms are known to be noise-sensitive [14] and involve
a trade-off between accuracy and resolution depending on
window size [15], [16]. Deep learning-based techniques [14],
[17]–[19] were recently introduced to learn statistical patterns
and correlations in pre- and post-deformed ultrasound data for
displacement tracking. During testing and deployment, these
methods primarily rely on inference and GPU acceleration,
making them well-suited for real-time applications. However,
large amounts of training data are required to develop accurate
models [18], and the limited availability of clinical datasets
remains a key challenge to broader adoption in ultrasound
displacement tracking. Despite their promise, these models
demand large annotated datasets for training, posing a barrier
due to limited clinical data availability [18].

An alternative approach has been to consider energy func-
tion optimization [20]–[22], which models tissue deformation
as a non-linear cost function to achieve spatially coher-
ent displacement estimates [23]. Among energy-based meth-
ods, Second-Order Ultrasound eLastography (SOUL) [22]
has shown promising results by integrating data fidelity and
second-order regularization terms. However, its success heav-
ily depends on properly selected regularization parameters.
Currently, SOUL requires manual tuning of its regularization
weights to produce high-quality strain images, making it
highly user-dependent and limiting its efficiency and usability.

In this work, we propose a deep learning-based framework
to automate the selection of regularization parameters in
SOUL for strain elastography, as illustrated in Fig. 1. We
trained a convolutional neural network (CNN) on simulated
and phantom datasets to learn the relationship between input
RF data and optimal SOUL parameters. We then classified
strain images generated with different SOUL parameter set-
tings as either suitable or unsuitable based on learned quality
characteristics. Finally, we automated the selection of the
optimal strain image along with its corresponding parameter
set to enhance autonomy in SOUL-based elastography.



Fig. 1. Illustration of the autonomous SOUL parameter selection strategy.

II. METHODS

A. Datasets

We utilized two publicly available datasets (one simulated,
one phantom, both from data.sonography.ai [24]) to
train and evaluate our approach. The simulated dataset in-
cluded 13 phantoms each modeled with background and target
elastic moduli of 20 kPa and 40 kPa, respectively, and a
Poisson’s ratio of 0.49. A 2% uniaxial compression was
applied using ABAQUS (Providence, RI), and corresponding
pre- and post-compression RF data were simulated using
Field II [25], [26]. The public phantom dataset consisted of RF
frame pairs from an experimental phantom (CIRS Model 059,
Norfolk, VA) [27]–[29] with 20 ± 5 kPa background, acquired
using an Alpinion E-Cube 12R scanner with an L3-12H probe,
and included a hard inclusion with a higher elastic modulus
than the background. The transmit and sampling frequencies
were 10 MHz and 40 MHz, respectively. Finally, four private
phantoms were collected for fine-tuning the deep learning
network.

B. SOUL Parameters of Interest

The SOUL algorithm [22] uses pre- and post-compressed
beamformed RF frames, I1(i, j) and I2(i, j), respectively, to
estimate the incremental displacement field between tissue
states. The indices i and j correspond to the axial and lateral
positions, respectively, with 1 ≤ i ≤ m and 1 ≤ j ≤
n. Dynamic programming [30] was employed to generate
initial displacement estimates ai,j and li,j in the axial and
lateral directions. The following SOUL cost function [22]
was then formulated and analytically optimized to obtain the
incremental displacement fields ∆ai,j and ∆li,j :

C(∆a1,1, ...,∆am,n,∆l1,1, ...,∆lm,n) =
n∑

j=1

m∑
i=1

{D(i, j, ai,j , li,j ,∆ai,j ,∆li,j)}+ α1∥∂ya∥22+

α2∥∂xa∥22 + β1∥∂yl∥22 + β2∥∂xl∥22 + wα1∥∂2
ya∥22+

wα2∥∂2
xa∥22 + wβ1∥∂2

y l∥22 + wβ2∥∂2
xl∥22

(1)

where ∂y(·) and ∂x(·) are first-order axial and lateral deriva-
tives, respectively, ∂2

y(·) and ∂2
x(·) are second-order axial

and lateral derivatives, respectively, α1 and α2 regularize the
axial displacement field in the axial and lateral directions,
respectively, β1 and β2 regularize the lateral displacement
field in the axial and lateral directions, respectively, w is the
ratio between the second-order and first-order regularization
weights, and D(·) is a measure of data amplitude similarity.

Because axial strain estimation is less affected by lateral
displacement [31], this work sets β1 = α1/2 and β2 = α2/2.
A fixed weight of w = 100 is also used, as SOUL is generally
less sensitive to the ratio between first- and second-order
terms. These simplifications reduce the tunable parameters
to α1 and α2. To eliminate user-dependent (i.e., manual)
tuning and improve consistency, the goal of our deep learning
approach is to automate the selection of the parameter set
{α1, α2}.

C. Data Label Assignment

Strain images were labeled as acceptable (1) or unacceptable
(0) based on qualitative and quantitative assessments. Qual-
itative assessments were based on background smoothness,
contrast, and lesion boundary clarity. Quantitative assessments
were based on signal-to-noise ratio (SNR) and strain ratio
(SR), which are two standard metrics for evaluating strain
image quality, defined as:

SNR =
s̄b
σb

(2)

SR =
s̄t
s̄b

(3)

where s̄b and s̄t are the mean strain values in the background
and target ROIs, respectively, and σb is the standard deviation
in the background. Two 50×50 pixel regions of interest
(ROIs), one in the target and one in the background, were
used to compute SNR and SR. Acceptable SNR and SR values
ranged 15–120 and 0.5–0.68, respectively, for simulated data,
and 22–45 and 0.39–0.42, respectively, for public phantom
data.



Fig. 2. Axial strain results obtained with SOUL and the proposed autonomous parameter selection strategy applied to (a) simulated and (b) phantom data.

To create labeled images for training, validation, and testing,
the α1 and α2 parameters were varied (i.e., ranging 0.001-1000
and 0-500, respectively, for simulated data and 0.00001-1900
and 0-100, respectively, for phantom data). These variations
resulted in a total of 3834 simulated and 576 phantom strain
images that were acceptable (i.e., 1), and 6605 simulated and
580 phantom strain images that were unacceptable (i.e., 0).
Examples of acceptable and unacceptable images are shown
in Fig. 1.

D. CNN Training

We designed a binary classifier CNN to assess strain image
quality. The CNN consisted of four 2D convolutional layers
(3×3 kernel, stride 1, ReLU activation) with 16, 32, 64, and
128 filters, each followed by max-pooling and 30% dropout.
The resulting features were flattened and passed through a
fully connected layer with 256 ReLU units and 50% dropout,
followed by a sigmoid-activated output unit.

The CNN was trained on simulated data (80%-20% train-
validation split) using binary cross-entropy loss, Adam opti-
mizer (learning rate 10−3), and 32 batch size up to 200 epochs
with early stopping. To improve generalization, the pre-trained
CNN was fine-tuned on phantom data using a reduced learning
rate (3×10−5) and the same training configuration.

To select optimal SOUL parameters during testing, the top
three strain images based on CNN confidence were inspected
to safeguard our final prediction against false positives, and
the corresponding parameter set {α1, α2} producing the most
acceptable strain image was chosen. To quantify performance,
the following metrics were calculated:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-score =
2 · Precision · Recall
Precision + Recall

(7)

where TP, TN, FP, and FN refer to true positive, true negative,
false positive, and false negative, respectively, based on the
labels described in Section II-C.

TABLE I
PERFORMANCE METRICS OF THE CNN MODEL

Data Accuracy Precision Recall F1-score

Simulated 96.22% 90.85% 100.00% 95.21%
Experimental 99.45% 98.96% 100.00% 99.47%

III. RESULTS AND DISCUSSION

Fig. 2 shows axial strain results obtained with SOUL and
the proposed method for test instances of simulated and
public phantom data. With simulated data, the strain images
obtained with SOUL (α1 = 40, α2 = 0.05) and with the
autonomously selected method (α1 = 38.26, α2 = 0.0055)
resemble the ground truth and successfully show the inclusion.
With phantom data, the autonomously selected method shows
sharper target boundary (α1 = 19.35, α2 = 0.0125) compared
to the SOUL image obtained with manual parameters (α1 =
40, α2 = 0.05).

Table I reports the performance of the CNN when classi-
fying strain images as acceptable or unacceptable. With the
simulated and phantom data, the CNN achieved 100.00%
recall, indicating that acceptable strain images were correctly
identified with each network input. In addition, the F1 scores
exceeded 95%, which represents an acceptable [32] perfor-
mance balance between precision and recall.

Future work will apply our approach to in vivo data.
Additional future directions include alternative network archi-
tectures, such as transformer-based models [33], which can
address long-range dependencies and complex patterns [34].
Overall, the results herein are promising to enhance the
accuracy and reliability of parameter selection in SOUL strain
imaging.

IV. CONCLUSION

We successfully implemented a deep learning-based frame-
work to autonomously select regularization parameters in
energy-based ultrasound strain elastography. By training a
CNN on simulated and phantom datasets, the proposed ap-
proach remarkably identified optimal SOUL parameters, elim-
inating the need for manual tuning. The proposed approach has
the potential to reduce user dependence when implementing
SOUL, which is generally beneficial to simplifying associated



diagnostic, treatment monitoring, and decision-making proce-
dures.
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