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Abstract—Stiffness estimation in ultrasound shear wave elas-
tography critically depends on the quality of shear wave motion
fields derived from acoustic radiation force-perturbed ultrasound
frames. However, as shear waves propagate through tissue, noise
and rigid structures reduce motion amplitudes depending on
tissue and acoustic properties. The loss of amplitude degrades
shear wave speed estimation and limits the effective field of
view. Herein, we introduce ShearMoFit, a dual-plane shear wave
motion cleaning technique designed to enhance robustness to
noise and amplitude loss. After obtaining motion fields using
the Loupas algorithm and applying directional filtering, each
time–lateral slice is normalized and summed. A flood-fill algo-
rithm isolates the shear wave trajectory, followed by RANSAC-
based polynomial fitting across axial–lateral planes. The resulting
coordinates define a spatially decaying mask that localizes the
shear wavefront while suppressing noise. When applied to a CIRS
059 breast phantom, relative to Loupas-based reconstructions,
ShearMoFit improves median signal-to-noise ratios by 13.83 dB
in background regions, 22.65 dB in inclusion regions, and
improves the median contrast-to-noise ratio by 27.10 dB. These
improvements are promising for shear wave motion-tracking
driven tissue characterization, enabling more accurate diagnosis,
treatment monitoring, and clinical adoption of elastography.

Index Terms—Shear wave elastography, noise robustness,
ShearMoFit, shear wave speed, RANSAC, flood-fill

I. INTRODUCTION

Ultrasound elastography is a non-invasive imaging modality
that assesses the mechanical properties of biological tissues
by exploiting the differences in elasticity between healthy
and pathological regions [1], [2]. Among different ultrasound
elastography techniques, shear wave elastography [3], [4] is
widely adopted due to its ability to provide quantitative,
reproducible, and operator-independent measurements of tis-
sue stiffness. Unlike traditional elastography methods that
rely on manual compression and relative deformation [5]–[7],
shear wave elastography utilizes an acoustic radiation “push”
force to generate shear waves within the tissue. Shear wave
elastography has demonstrated promise in a broad range of
clinical applications, including liver fibrosis staging, breast
tumor characterization, and musculoskeletal evaluations [8]–
[10]. One key benefit of shear wave elastography is the ability
to provide localized stiffness maps, making this technique a
valuable tool for diagnosis, treatment planning, and disease
monitoring.

Initiated with an acoustic radiation push force applied to a
tissue medium to induce tissue particle displacement, particle

displacements spread in the form of shear waves at a speed of
cs. This shear wave speed is related to the tissue medium
elasticity through the relation E = 3ρc2s, where E and ρ
denote medium elasticity modulus and density, respectively
[11]. The shear waves are tracked using high-frame-rate (e.g.,
3-10 kHz) in-phase/quadrature (IQ) or radio-frequency (RF)
ultrasound data. The shear wave motion (i.e., tissue particle
displacement or velocity) is then estimated from the IQ or
RF data with speckle-tracking algorithms [12]–[19]. Using
the tracked particle motion fields, shear wave speed can be
estimated through time-of-flight or phase velocity methods
[20]–[25]. Due to the sequential steps of tissue particle dis-
placement, followed by shear wave speed estimation, then
tissue elasticity estimation, the accuracy of the estimated tissue
elasticity heavily depends on the quality of the tracked shear
wave motion.

At distant locations from the acoustic push focus (e.g.,
>2cm, depending on medium properties, acoustic intensity,
depth, etc.), shear wave signal attenuation leads to reduced
motion amplitudes and a low signal-to-noise ratio (SNR)
in speckle-tracked particle displacement estimations. As a
result, the accuracy of subsequent shear wave speed estimation
is reduced, which, in turn, limits the effective shear wave
imaging field. Conventional speckle-tracking methods lack the
ability to address low-SNR regions, often resulting in noise-
dominated motion estimates and erroneous elasticity maps. To
address this, low-SNR regions must be cleaned of noise while
preserving the shear wavefront and regenerating low-amplitude
shear wave signals.

In this paper, we propose ShearMoFit, a dual-plane shear
wave motion cleaning technique designed to improve the
accuracy of shear wave speed estimation in noisy and signal at-
tenuated regions. ShearMoFit utilizes spatiotemporal features
of the shear wave motion (i.e., tissue particle displacement) by
sequentially processing time–lateral and axial–lateral planes.
Starting from Loupas-tracked [13] motion. We tested Shear-
MoFit using tissue-mimicking phantom data to investigate
expected improvements in background and inclusion shear
wave speed estimation and benchmark our results against
Loupas-tracked motion.



Fig. 1. An illustration of the ShearMoFit strategy.

II. METHODS

A. Experimental Phantom Data and Displacement Tracking

A CIRS 059 breast elastography phantom (CIRS Inc., Nor-
folk, VA, USA) was utilized for data acquisition. This phantom
contains multiple inclusions with reported elasticity that is at
least twice that of the 20± 5 kPa background. A Verasonics
Vantage 128 (Kirkland, WA) research ultrasound system with
an L7-4 linear array transducer (central frequency: 5.2 MHz,
sampling frequency: 20.8 MHz, 128 elements, element width:
0.25 mm, pitch: 0.3 mm) was used to acquire data comprising
homogeneous tissue and an inclusion surrounded by tissue.
The acoustic push force was created with 32 active elements
and focused at a depth of 15 mm. IQ data was acquired to track
the resulting acoustic response with a frame rate of 10 kHz.
Motion tracking was performed with the Loupas algorithm
[13], followed by a spatiotemporal median filter with kernel
dimensions (z, x, t) = (3, 3, 5) to suppress noise artifacts,
where z, x, and t are variables to indicate axial, lateral, and
temporal dimensions, respectively. Directional filtering was
then applied to remove shear wave components propagating in
undesired directions (e.g., reflections between the background
and inclusion). The resulting motion volume is denoted as
L(z, x, t) ∈ RZ×X×T , where Z, X , and T are the total
number of axial pixels, lateral pixels, and temporal samples,
respectively.

B. ShearMoFit

The process of ShearMoFit is depicted in Fig. 1. Each t–x
slice of the volume L was biaxially normalized by taking
each sample located at a particular t value, dividing by the
maximum value, then repeating this process for each sample
located at a particular x value, resulting in two matrices of
normalized t-x values and finally performing summation, as
follows

P ′
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Ptx
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t

(Ptx)
+

Ptx

max
x

(Ptx)
, (1)

where Ptx ∈ RT×X refers to a t–x slice, and the max(·)
operators normalize Ptx over the time and lateral dimensions.
A seed point was determined for each t–x slice by first taking

the maximum value of P ′
tx at 2 ms to obtain xs, then taking

the maximum value of P ′
tx at xs to obtain ts, as follows:
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x
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t
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These seed parameters were empirically determined to avoid
“blind regions” [26] from the acoustic push. A flood-fill
algorithm [27] was then applied to the output of Eq. (1)
for each t–x slice, using the identified seed point, (xs, ts).
Each z–x frame was then processed by fitting a 5-th degree
polynomial to peak positions using a RANSAC algorithm
[28], with axial coordinates as the input. The RANSAC-fitted
coordinates (z̃, x̃) define the following 2D mask:
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where ϱ is a constant that determines the spatial decay of
the mask W (z, x). This RANSAC polynomial fitting was
applied to each z-x plane to obtain a volume representation
S(z, x, t) ∈ RZ×X×T . The entire process of taking L(z, x, t)
as input to generate S(z, x, t) is referred to as ShearMoFit.

C. Shear Wave Speed Estimation and Metrics
A cross-correlation-based [21] time-of-flight method was

employed to estimate the shear wave speed from Loupas
tracked motion, L, and ShearMoFit processed motion, S.
Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)
were calculated as defined below:
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where µ and σ denote the mean and standard deviation of a
shear wave speed estimated region and the subscripts t and b
represent the target and background, respectively. A total of
24 2 mm × 2 mm background regions of interest (ROIs) and
five 2 mm × 2 mm target ROIs (located within an imaged
inclusion) were selected. All data processing and analyses
were performed with Python v3.12.



Fig. 2. Shear wave motion comparison between Loupas and ShearMoFit.

III. RESULTS

Fig. 2 shows the shear wave motions obtained with the
Loupas (left) and ShearMoFit (right) methods algorithms
applied to a homogeneous (top) elasticity region and a re-
gion containing an inclusion (bottom). In the homogeneous
case, the Loupas algorithm produced amplitude variations and
background noise, whereas ShearMoFit presents a cleaner and
more sharply defined wavefront with consistent amplitude. In
the inclusion case, the Loupas algorithm outputs a decayed
shear wave front surrounded by noise, whereas ShearMoFit
displays a cleaner signal.

Fig. 3 shows images of shear wave speeds estimated using
the Loupas and ShearMoFit algorithms. The Loupas-based
shear wave speed maps are noisy and contain higher than
expected estimation in the background regions and lower
than expected background estimations within the inclusion.
In comparison, the ShearMoFit shear wave speed maps are
smoother and contain less variations throughout the field-of-
view.

Fig. 4 shows SNR and CNR measurements. Relative to
the Loupas algorithm, ShearMoFit improves the median SNR
by 13.83 dB and 22.65 dB in the background and target,
respectively. The corresponding median CNR improvement is
27.10 dB.

IV. DISCUSSION

This work is the first to propose a dual-plane ultrasound
shear wave motion cleaning technique that enhances motion
quality and subsequent shear wave speed estimation. By com-
bining time-lateral flood-fill and axial-lateral RANSAC-based
polynomial fitting, our method suppresses noise and localizes
the shear wavefronts. Compared to the conventional Loupas
tracking algorithm, the improved signal quality and shear wave
speed estimation with ShearMoFit (Figs. 2-4) highlights its

Fig. 3. Shear wave speed estimation comparison between Loupas and
ShearMoFit.

Fig. 4. SNR and CNR comparison between Loupas and ShearMoFit.

potential to improve stiffness imaging accuracy and support
broader clinical adoption of shear wave elastography.

The field-of-view improvement (e.g., bottom right regions of
estimated shear wave speed in Fig. 3) indicates that the Loupas
algorithm overestimates the expected shear wave speed, due to
low-amplitude signals being dominated by noise. ShearMoFit
partially recovers the corrupted information in this bottom-
right region, producing usable shear wave speed quantities by
cleaning the shear wave signals with masks (Fig. 3).

One limitation of ShearMoFit is the artifacts observed near
the proximal and distal regions of the inclusion in Fig. 3. These
artifacts occur because of Runge’s phenomenon [29], which is
a common issue when using high-degree polynomial fitting. As
ShearMoFit relies on RANSAC-based polynomial modeling to
trace the wavefront trajectory, the choice of polynomial degree
plays a critical role in controlling such artifacts, resulting in
streak-like distortions near the proximal and distal inclusion
boundaries. These artifacts can potentially be improved with
adaptive or regularization strategies in future work.



V. CONCLUSION

This work presents ShearMoFit, a novel dual-plane ultra-
sound shear wave motion cleaning technique to improve mo-
tion field fidelity and shear wave speed estimation in elastog-
raphy. By combining time-lateral flood-fill segmentation with
axial-lateral RANSAC-based polynomial fitting, ShearMoFit
effectively localizes shear wave propagation and suppresses
noise. Experimental results demonstrate median improvements
of 13.83 dB, 22.65 dB, and 27.10 dB in background SNR,
target SNR, and CNR, respectively, compared to conventional
Loupas-based tracking. In addition, ShearMoFit improves the
spatial field-of-view of the estimated shear wave speed map,
relative to the correponding map produced by the Loupas al-
gorithm. These improvements are promising for more reliable
elasticity measurements, supporting enhanced detection and
characterization of pathological tissue stiffness, which has the
potential to facilitate more robust clinical decision-making in
ultrasound-based disease assessment.
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S. Blümel, R. A. Deibel, T. Kühlewindt, G. Leinenkugel, S. Müller,
E. Furrer et al., “Performance of two-dimensional shear wave elastog-
raphy and transient elastography compared to liver biopsy for staging
of liver fibrosis,” European Journal of Clinical Investigation, vol. 53,
no. 7, p. e13980, 2023.

[9] J. Gu, R. Ternifi, N. B. Larson, J. M. Carter, J. C. Boughey, D. L.
Stan, R. T. Fazzio, M. Fatemi, and A. Alizad, “Hybrid high-definition
microvessel imaging/shear wave elastography improves breast lesion
characterization,” Breast Cancer Research, vol. 24, no. 1, p. 16, 2022.
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