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Deep Learning to Localize Photoacoustic
Sources in Three Dimensions: Theory
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Abstract—Surgical tool tip localization and tracking
are essential components of surgical and interventional
procedures. The cross sections of tool tips can be con-
sidered as acoustic point sources to achieve these tasks
with deep learning applied to photoacoustic channel
data. However, source localization was previously lim-
ited to the lateral and axial dimensions of an ultrasound
transducer. In this article, we developed a novel deep
learning-based 3-D photoacoustic point source localiza-
tion system using an object detection-based approach
extended from our previous work. In addition, we derived
theoretical relationships among point source locations,
sound speeds, and waveform shapes in raw photoacous-
tic channel data frames. We then used this theory to
develop a novel deep learning instance segmentation-
based 3-D point source localization system. When tested
with 4000 simulated, 993 phantom, and 1983 ex vivo chan-
nel data frames, the two systems achieved F1 scores as
high as 99.82%, 93.05%, and 98.20%, respectively, and
Euclidean localization errors (mean ± one standard devi-
ation) as low as 1.46 ± 1.11 mm, 1.58 ± 1.30 mm, and
1.55 ± 0.86 mm, respectively. In addition, the instance
segmentation-based system simultaneously estimated
sound speeds with absolute errors (mean ± one standard
deviation) of 19.22 ± 26.26 m/s in simulated data and
standard deviations ranging 14.6–32.3 m/s in experimental
data. These results demonstrate the potential of the pro-
posed photoacoustic imaging-based methods to localize
and track tool tips in three dimensions during surgical and
interventional procedures.

Index Terms— 3-D localization, computer vision, deep
learning, detection, imaging, phased arrays, photoacous-
tics, segmentation.
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I. INTRODUCTION

SURGICAL tool tip localization and tracking are criti-
cal to the success of interventional procedures such as

percutaneous liver biopsies [1] and cardiac catheter abla-
tions [2]. In percutaneous liver biopsies, a needle is introduced
through the skin and liver tissue to extract specimens for
diagnostic evaluation of a variety of liver disorders [3],
including nonalcoholic fatty liver disease which affects up
to 100 million people in the USA [4]. In cardiac catheter
ablations, performed on 18 000–45 000 people annually in the
USA [5], a catheter is navigated from an insertion point in
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Highlights
• We developed two novel deep learning-based 3-D photoacoustic point source localization systems using object

detection and instance segmentation paradigms with theory-based performance optimizations.

• The object detection approach successfully localized point sources in the elevation dimension, while the instance
segmentation approach estimated both the 3-D point source location and sound speed.

• These systems can be deployed to track and visualize surgical tool tips during photoacoustic-guided interventional
procedures implemented with or without robotic assistance.

the thigh to the heart via the femoral vein. In the absence
of sufficient navigation information, navigation errors could
cause pain and intraperitoneal bleeding after percutaneous liver
biopsies [6], [7] or perforation of heart tissue during cardiac
catheterization procedures [5]. Therefore, these procedures are
typically performed with the needle or catheter tip locations
observed in real time to reduce the risk of patient injury and
related complications [2], [7].

Traditional medical imaging modalities utilized to estimate
the locations of surgical needle, catheter, and other tool tips
during interventional procedures include computed tomogra-
phy (CT) [8], [9], [10], magnetic resonance imaging (MRI)
[11], [12], [13], and fluoroscopy [14], [15], [16]. However,
these imaging systems are typically expensive, large, and
difficult to transport, thereby limiting the ability of these
modalities to improve global access to quality healthcare.
In addition, CT and fluoroscopy expose both the patient and
the interventionalist or surgeon to ionizing radiation [17],
[18], resulting in potential biological effects [19] including
radiodermatitis [20], [21], increased cancer risks [22], [23],
[24], [25], and genetic defects [23], [25].

Ultrasound imaging is an alternative to CT, MRI, or flu-
oroscopy and overcomes the noted limitations of these
techniques with its low cost, portability, and absence of
ionizing radiation. With ultrasound, the transmission and
reception of acoustic waves are employed to reconstruct
human-interpretable images using beamforming algorithms,
such as delay-and-sum (DAS) [26], [27]. Ultrasound imaging
is commonly used to guide percutaneous liver biopsies [28]
and cardiac procedures [29], yet fails in acoustically chal-
lenging environments characterized by significant acoustic
clutter [30], sound scattering, and signal attenuation. Some
examples of acoustically challenging environments include
transcranial imaging [31], abdominal imaging [30], spinal
imaging [32], or the imaging of obese patients [33].

Photoacoustic imaging is an emerging imaging modality
with the potential to address the noted limitations of ultrasound
imaging. Unlike ultrasound, which requires the transmission
and reception of sound to make images, photoacoustic imaging
transmits light to generate an acoustic response that can
be received with the same ultrasound transducer. Therefore,
photoacoustic imaging only requires one-way (as opposed
to round-trip) acoustic travel from the transmission source
to the ultrasound receiver, improving tool tip localization
in acoustically challenging environments [34]. The received
signals are typically processed using similar beamforming
algorithms to ultrasound imaging (e.g, DAS) [35].

Su et al. [36] previously visualized needles in beam-
formed photoacoustic images overlaid on ultrasound images
with potential applications to a variety of biopsy procedures.
Lediju Bell and Shubert [37] developed a robotic system to
autonomously identify, localize, and track a needle tip in
real time in ex vivo tissue using amplitude information in
DAS-beamformed photoacoustic images. This system was also
utilized to track a catheter tip in real time during a cardiac
catheterization procedure performed on an in vivo swine [38].
However, this amplitude-based system was sensitive to reflec-
tion artifacts from surrounding structures (e.g., bone), limiting
the ability of the system to consistently maintain the catheter
tip in the field-of-view (FOV) of the transducer for the duration
of the procedure. Additional limitations include the loss of
information between the input channel data and the output
DAS image, which degrades target resolution with increasing
depth, thus limiting the ability to track deep targets.

To overcome the limitations of amplitude-based systems,
Allman et al. [39] modeled surgical tool tips as photoacoustic
point sources. Using this model, Allman et al. [39] developed
a deep learning-based approach to detect photoacoustic point
sources directly in raw channel data frames and distinguish
the identified sources from reflection artifacts. This approach
formulated the point source localization problem as an object
detection problem to identify waveforms corresponding to
either sources or reflection artifacts followed by a two-class
(i.e., source or artifact) classification problem to categorize the
waveforms based on the underlying targets.

The use of raw channel data as inputs enabled the deep
learning-based approach [39] to achieve consistent localization
performance across a wide range of target depths. This deep
learning-based system was integrated with a robotic control
system to localize and track needle tips in real time in a plasti-
sol phantom [40], [41] and ex vivo chicken breast [40], without
the unnecessary computational overhead of reconstructing
human-interpretable images using DAS beamforming. A simi-
lar deep learning-based approach was applied to photoacoustic
channel data frames of catheter tips in ex vivo and in vivo
swine hearts with potential applicability to cardiac catheter-
ization procedures [42]. However, these deep learning-based
systems are limited to estimating the lateral and axial displace-
ments of targets and are unable to provide usable position
information along the elevation dimension of the transducer.
In addition, these systems assumed a fixed speed of sound in
the surrounding medium.

Wang et al. [43] developed a 3-D photoacoustic-based
needle tip localization system by autonomously scanning the
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elevation dimension of the ultrasound transducer using a
robotic arm. However, this system required 40 frames to gen-
erate each 3-D photoacoustic image grid. With a 10 Hz laser
pulse repetition frequency, this requirement resulted in each
3-D image grid requiring 4 s to be generated (i.e., effective
frame rate of 0.25 Hz). This low effective frame rate limits
applicability to interventional procedures requiring real-time
surgical tool tip location information.

In this article, we define three objectives to localize a
photoacoustic point source in three spatial dimensions from
a single channel data frame, enabling the design of two novel
deep learning-based photoacoustic point source localization
systems. First, we extend the two-class classification model
of sources and artifacts proposed by Allman et al. [39] to a
22-class classification model with the elevation displacement
information encoded in the class names. Second, we derive
a theoretical framework using wave propagation time calcu-
lations to relate the 3-D point source location, the speed of
sound in the underlying medium, and the shape of the wave-
form in the channel data frame acquired by the transducer.
Third, we design a theory-based least squares optimization
algorithm using our new theoretical framework to estimate the
location of the point source and the surrounding medium sound
speed. The first objective described above results in an object
detection-based 3-D photoacoustic point source localization
system, while a combination of the second and third objectives
results in an instance segmentation-based 3-D point source
localization and sound speed estimation system. We train,
test, and evaluate the detection, segmentation, localization,
and sound speed estimation performance of the two systems
resulting from these three objectives.

The remainder of this article is organized as follows.
Section II presents a theoretical framework relating the shape
of the source waveform to the location of the corresponding
point source, relative to the transducer and medium sound
speed. Section III describes the simulation and data acqui-
sition process, training and testing methods for our deep
learning-based photoacoustic point source localization sys-
tems, and associated performance metrics. Section IV reports
the associated results. Section V discusses the implications and
future potential of our work. Finally, Section VI concludes this
article with a summary of our key findings.

II. THEORY

A. Context and Overview

To contextualize our theoretical framework, Fig. 1 shows
simulated DAS-beamformed images, followed by raw channel
data frames from two photoacoustic point sources imaged
by an ultrasound transducer. The first source [Fig. 1(a)] is
centered in the lateral and elevation dimensions of the trans-
ducer. The second source [Fig. 1(b)] is centered in the lateral
dimension and displaced outside the physical elevation limits
of the transducer. The elevation displacement of the second
source has reduced signal energy (e.g., due to attenuation),
which translates to reduced brightness in the corresponding
DAS-beamformed image (relative to the first source), yet the

Fig. 1. Simulated photoacoustic images of point sources located
(a) within and (b) outside the elevation width of an ultrasound transducer,
with corresponding raw channel data frames (c) and (d) before and
(e) and (f) after annotating the lower (blue) and upper (orange) bounds
of the waveform limits.

signal shape at the center of each source appears to be similar.
This similarity is expected as a result of the information loss
inherent to the DAS beamforming process.

The reduction in signal amplitudes associated with the
elevation displacement is more evident in the corresponding
channel data frames shown in Fig. 1(c) and (d). In addition, the
increased elevation displacement of the second source (relative
to the first source) results in a larger separation between the
upper and lower bounds of the source waveform, as indicated
by the annotations in Fig. 1(e) and (f). In particular, the
“lower” bound is defined as having lower propagation time
than the “upper” bound.

The visible dependence of the waveform shape on the
elevation source displacement motivates the development of
a theoretical framework relating the 3-D location of the
photoacoustic point source to the shape of the corresponding
waveform in raw photoacoustic channel data. Our associated
theoretical framework must meet two criteria: 1) characterize
the shape of the waveform in the channel data frame as a
function of the properties of the photoacoustic point source and
medium and 2) estimate the 3-D location of the photoacoustic
point source and sound speed in the surrounding medium using
the segmented shape of this waveform.
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Fig. 2. Photoacoustic point source located at point S in a reference
frame W with pressure wave modeled as a hollow sphere of thick-
ness 2 × wS propagating outward from the source with time-varying
radius rS(t).

To characterize the shape of the waveform as a function of
the properties of the corresponding photoacoustic point source,
Section II-B defines a point source in a homogeneous medium
and models the pressure wave propagating from the point
source. Section II-C models an ultrasound transducer as an
array of transducer elements. Section II-D derives the shape
of the waveform corresponding to the point source from the
propagation time calculations for each individual transducer
element. Section II-E models a photoacoustic point source
localization system taking a raw channel data frame as input
and providing estimates of the point source location with
surrounding medium sound speed as outputs.

B. Photoacoustic Point Source

To characterize the shape of the waveform corresponding to
a photoacoustic point source in a channel data frame acquired
by an ultrasound transducer, we first define a photoacoustic
point source in a homogeneous medium with speed of sound c.
Let this point source be located at the point S, as shown in
Fig. 2. The point S is represented by x⃗ S in the reference frame
W , given by

x⃗ S =
[
xS, yS, zS

]T (1)

where zS ≥ 0.
We define a pressure wave propagating spherically outward

from point S with speed c, as shown in Fig. 2. We model this
pressure wave as a hollow sphere of thickness 2 × wS and
radius rS(t) given by

rS(t) = ct (2)

where t is the duration of time for which the wave has been
propagating outward from the point source. To model the
instantaneous amplitude pD(l, t) of the pressure wave at a
distance l from the point source, we define a linear approxi-
mation of the N -shaped waveform presented by Diebold et al.
[44] as follows:

pD(l, t) =


p0

wS
[l − rS(t)], if |l − rs(t)| ≤ wS

0, otherwise
(3)

where p0 is the peak amplitude of the pressure wave at dis-
tance l from the point S. Using (3) we define the instantaneous

pressure amplitude at a point X as follows:

pP
(
x⃗ X , t; x⃗ S

)
= pD

(∥∥x⃗ S − x⃗ X
∥∥, t

)
(4)

where x⃗ X is the location of the point X in the reference frame
W given by

x⃗ X =
[
xX , yX , zX

]T
. (5)

From (3) and (5), we observe that the pressure pP(x⃗ X , t; x⃗ S)

is nonzero in the time interval given by∥∥x⃗ S − x⃗ X
∥∥− wS ≤ rS(t) ≤

∥∥x⃗ S − x⃗ X
∥∥+ wS. (6)

C. Modeling a Transducer Array

Consider a transducer array consisting of NT elements of
height hT , width wT , and pitch pT . For commercially available
1-D array transducers, the element width wT is typically an
order of magnitude smaller than the height hT . Therefore, for
ease of computation we model each transducer element as a
line segment of height hT . Let this transducer array be held
stationary in contact with a homogeneous medium with speed
of sound c. We refer to an individual element in this transducer
array by the index n, where 0 ≤ n < NT . Assuming that the
center of the transducer array coincides with the origin of the
reference frame W , we define the center T (n) of transducer
element n in the frame W with location x⃗T (n) given by

x⃗T (n) = [xT (n), 0, 0]T (7)

where

xT (n) =

(
n −

NT − 1
2

)
pT . (8)

We also define points N (n) and F(n) on the surface of
transducer element n which are nearest to and farthest from
the point S, respectively. The coordinates of the point N (n)

are given by

x⃗ N (n) =
[
xT (n), yN , 0

]T (9)

where yN is given by

yN =


hT /2, if yS ≥ hT /2
yS, if |yS| < hT /2
−hT /2, otherwise.

(10)

The coordinates of the point F(n) are given by

x⃗ F (n) =
[
xT (n), yF , 0

]T (11)

where yF is given by

yF =

{
−hT /2, if yS ≥ 0
hT /2, otherwise.

(12)
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D. Shape of Waveform Corresponding to Photoacoustic
Point Source in Channel Data Frame

Let the transducer acquire NS samples of received pressure
amplitude corresponding to a desired imaging depth DI at a
sampling rate of fS . The value of NS is given by

NS = DI

(
fS

c

)
. (13)

These samples are organized to form a raw photoacoustic
channel data frame of NT × NS pixels. We define a point
Q located at

p⃗Q =
(
m Q, nQ

)
(14)

where m Q and nQ are the row and column indices, respec-
tively, of point Q in the raw channel data frame. The received
signal at point Q corresponds to the pressure amplitude
received by the transducer element nQ at time instant tQ ,
defined as follows:

tQ =
m Q

fS
. (15)

Let the region 9(x⃗ S, c) correspond to the source waveform
in the channel data frame acquired by the transducer array.
To characterize 9(x⃗ S, c), we define the sets L(x⃗ S, c) and
U (x⃗ S, c) forming the lower and upper bounds, respectively,
of 9(x⃗ S, c), as illustrated in Fig. 1(e) and (f).

To compute the relationship between m Q and nQ for a
point Q in the set L(x⃗ S, c), we must determine the instant
at which the pressure wave from the point source first reaches
the transducer element nQ . Based on (2), (6), and (15), the
locus of points in L(x⃗ S, c) is given by∥∥x⃗ S − x⃗ N

(
nQ
)∥∥− wS =

cm Q

fS
. (16)

Substituting (1) and (8)–(10) into (16), the locus of points in
L(x⃗ S, c) is given by(

cm Q

fS
+ wS

)2

−

[(
nQ −

NT − 1
2

)
pT − xS

]2

= z2
S (17)

for point source locations S within the elevation limits of the
transducer (i.e., |yS| ≤ hT /2), and(

cm Q

fS
+ wS

)2

−

[(
nQ −

NT − 1
2

)
pT − xS

]2

=

(
|yS| −

hT

2

)2

+ z2
S (18)

for point source locations S outside the elevation limits of the
transducer (i.e., |yS| > hT /2). Equations (17) and (18) can be
represented as hyperbolic curves of the form(

m Q − zL
(
x⃗ S, c

)
bL
(
x⃗ S, c

) )2

−

(
nQ − xL

(
x⃗ S, c

)
aL
(
x⃗ S, c

) )2

= 1 (19)

where zL , xL , bL , and aL , are defined as follows:

zL
(
x⃗ S, c

)
= −

wS fS

c
(20)

xL
(
x⃗ S, c

)
=

(
NT − 1

2

)
+

xS

pT
(21)

bL
(
x⃗ S, c

)
=


fSzS/c, if |yS| ≤ hT /2

fS

√(
|yS| −

hT
2

)2
+ z2

S

c
, otherwise

(22)

and

aL
(
x⃗ S, c

)
=


zS/pT , if |yS| ≤ hT /2√(

|yS| −
hT
2

)2
+ z2

S

pT
, otherwise.

(23)

Using the parameters above, we obtain the following expres-
sion for the set L(x⃗ S, c), which defines the lower bound of
the waveform (i.e., the wavefront)

L
(
x⃗ S, c

)
=


p⃗Q :

(
m Q − zL

(
x⃗ S, c

)
bL
(
x⃗ S, c

) )2

−

(
nQ − xL

(
x⃗ S, c

)
aL
(
x⃗ S, c

) )2

= 1


. (24)

To compute the relationship between m Q and nQ for a
point Q in the set U (x⃗ S, c), we must determine the instant
at which the inner surface of the hollow spherical pressure
wave from the point source passes the transducer element nQ .
Based on (2), (6), and (15), the locus of points in U (x⃗ S, c) is
given by ∥∥x⃗ S − x⃗ F

(
nQ
)∥∥+ wS =

cm Q

fS
. (25)

Substituting (1), (8), (11), and (12) into (25), the locus of
points in U (x⃗ S, c), for point source locations S within and
outside the elevation limits of the transducer, is given by(

cm Q

fS
− wS

)2

−

[(
nQ −

NT − 1
2

)
pT − xS

]2

=

(
|yS| +

hT

2

)2

+ z2
S. (26)

Equation (26) can be represented as a hyperbolic curve of the
form(

m Q − zU
(
x⃗ S, c

)
bU
(
x⃗ S, c

) )2

−

(
nQ − xU

(
x⃗ S, c

)
aU
(
x⃗ S, c

) )2

= 1 (27)

where zU , xU , bU , and aU , are defined as follows:

zU
(
x⃗ S, c

)
=

wS fS

c
(28)

xU
(
x⃗ S, c

)
=

(
NT − 1

2

)
+

xS

pT
(29)

bU
(
x⃗ S, c

)
=

fS

√(
|yS| +

hT
2

)2
+ z2

S

c
(30)

and

aU
(
x⃗ S, c

)
=

√(
|yS| +

hT
2

)2
+ z2

S

pT
. (31)

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 30,2025 at 11:40:58 UTC from IEEE Xplore.  Restrictions apply. 



GUBBI AND BELL: DEEP LEARNING TO LOCALIZE PHOTOACOUSTIC SOURCES IN THREE DIMENSIONS 791

Using the parameters derived above, we obtain the following
expression for the set U (x⃗ S, c), which defines the upper bound
of the waveform:

U
(
x⃗ S, c

)
=


p⃗Q :

(
m Q − zU

(
x⃗ S, c

)
bU
(
x⃗ S, c

) )2

−

(
nQ − xU

(
x⃗ S, c

)
aU
(
x⃗ S, c

) )2

= 1


. (32)

E. Estimating Point Source Location and Speed of
Sound From Waveform Shape

To estimate the location of a point source from the
shape of the corresponding waveform, we model an instance
segmentation-based point source localization system. This
model utilizes the waveform shape 9(x⃗ S, c) derived in
Section II-D, the point source location, x⃗ S , and surrounding
sound speed, c, as the ground-truth information. The corre-
sponding system consists of two stages to estimate the location
of the point source and sound speed. First, an instance seg-
mentation algorithm takes the channel data frame containing
the waveform 9(x⃗ S, c) as input and outputs an estimate 9̂

of the ground-truth waveform 9(x⃗ S, c). The locations of the
peaks of the hyperbolic curves forming the upper and lower
bounds of 9̂ are used to generate an initial estimate x̂ S of
the lateral and axial position of the source, assuming a fixed
sound speed of 1540 m/s and zero elevation displacement.
Second, an iterative least squares optimization algorithm is
implemented to improve the performance of the instance
segmentation-based point source localization system.

Taking the segmented region 9̂ and initial point source loca-
tion estimate x̂ S from the first stage as inputs, the iterative least
squares optimization algorithm first simplifies the input 9̂ by
extracting estimates L̂ and Û of the sets L(x⃗ S, c) and U (x⃗ S, c),
respectively. With the ground-truth information unavailable to
the point source localization system, the quality of the source
location estimate x̂ S for an assumed speed of sound ĉ may
be represented by the residual function rL( p⃗Q, x̂ S, ĉ) for any
point Q in the set L̂

rL
(

p⃗Q, x̂ S, ĉ
)

= m Q − zL
(
x̂ S, ĉ

)
−

bL
(
x̂ S, ĉ

)√√√√1 +

(
nQ − xL

(
x̂ S, ĉ

)
aL
(
x̂ S, ĉ

) )2


(33)

and the residual function rU ( p⃗Q, x̂ S, ĉ) for any point Q in the
set Û

rU
(

p⃗Q, x̂ S, ĉ
)

= m Q − zU
(
x̂ S, ĉ

)
−

bU
(
x̂ S, ĉ

)√√√√1 +

(
nQ − xU

(
x̂ S, ĉ

)
aU
(
x̂ S, ĉ

) )2
.

(34)

TABLE I
RANGES AND INCREMENT SIZES OF PARAMETERS USED TO

GENERATE SIMULATED DATASETS

Beginning with the initial estimates x̂ S and ĉ, each iteration of
the optimization algorithm minimizes the objective function

J
(
x̂ S, ĉ, L̂, Û

)
=

∑
p⃗Q∈L̂

r2
L

(
p⃗Q, x̂ S, ĉ

)
+

∑
p⃗Q∈Û

r2
U

(
p⃗Q, x̂ S, ĉ

)
.

(35)

Once optimized, the final outputs x̂ S and ĉ are obtained.

III. METHODS

A. Channel Data Acquisition
1) Photoacoustic Point Source Simulations: Channel data

were simulated using k-Wave [45], building on methods
previously developed for linear [39] and phased array trans-
ducers [42]. In particular, each simulation consisted of a
point source of radius 100 µm in a 3-D grid containing a
homogeneous medium. The top face of the simulation grid was
populated with sensing elements to record the local pressure
distribution at each time instant during the simulation. The
resolution of the simulation grid was 100 µm and its lateral,
elevation, and axial dimensions were 38.4, 25, and 120 mm,
respectively. These parameters were selected to simulate a
Verasonics P4-2v phased array ultrasound transducer (Kirk-
land, WA, USA) with 64 elements and a sampling rate of
11.88 MHz. The pitch, element height, and aperture length
of the transducer were 300 µm, 14 mm [46], and 19.2 mm,
respectively. To reduce the GPU memory and processing times
required for 3-D simulations, we modeled the transducer as a
continuous aperture [47] rather than the more accurate discrete
aperture model [39], [40], [42], [48].

A unique k-Wave simulation was conducted for each pos-
sible combination of sound speeds and source axial positions
selected from the parameters in Table I (i.e., 34 sound speeds
and 401 source axial positions yielded 13 634 unique sim-
ulations). The lateral and elevation positions of the point
source were kept constant across simulations at 9.6 and 7 mm,
respectively, from the corresponding lateral and elevation
edges of the simulation grid. These fixed positions combined
with the simulation grid dimensions selected above minimized
the number of simulations required for all possible source
positions summarized in Table I.

For each simulation, the initial pressure distribution of the
point source was modeled as a sphere of radius 100 µm
and smoothed using a Blackman filter [49]. To satisfy the
Courant–Friedrichs–Lewy condition [50], the simulations were
conducted with a time step of 17.5 ns, corresponding to a
sampling rate of 57.14 MHz. Each simulation was conducted
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Fig. 3. Experimental setups to acquire phantom data and ex vivo photoacoustic channel data frames with a fiber–catheter pair depth of (a) 25 mm,
(b) 23 mm, and (c) 46 mm relative to the imaging surface of the transducer. The transducer was attached to a robot arm and translated in the
elevation dimension to acquire photoacoustic channel data frames of the tip of the fiber–catheter pair at varying elevation displacements from the
transducer center.

for 4452 time steps, corresponding to an imaging depth of
12 cm at a sound speed of 1540 m/s. These simulations were
performed on four NVIDIA (Santa Clara, CA, USA) Quadro
RTX 8000 GPUs.

To train and test 3-D deep learning-based photoacoustic
point source localization systems (described in Section III-D),
each raw channel data frame consisted of one point source
and at most one reflection artifact with parameters randomly
sampled from the range reported in Table I, resulting in 20 000
raw photoacoustic channel data frames. Care was taken to
ensure a uniform distribution of sound speeds across the raw
channel data frames. For each frame, the simulation output
corresponding to the selected sound speed and point source
axial position was cropped to a 19.2 mm (lateral) × 14 mm
(elevation) × 120 mm (axial) region of interest (ROI) centered
on the selected source lateral and elevation positions. This
cropped matrix was then integrated across the lateral and ele-
vation dimensions to match the transducer pitch and element
height. The integrated matrix was then axially resampled to the
transducer sampling frequency to form a true photoacoustic
source signal of dimensions 64 × 926 pixels.

Reflection artifacts were generated as described by Allman
et al. [39] (i.e., a true photoacoustic source signal was shifted
deeper into the image by the Euclidean distance between the
source and reflector locations). Multiple simulation outputs
were superimposed to form sources and reflection artifacts
with a fixed radius of 500 µm. The superimposed source
and reflection artifact corresponding to each raw channel data
frame were multiplied by scalar object intensity multipliers
(randomly sampled from the range in Table I) and the scaled
frames were added. The resulting matrix was bandpass filtered
to allow ±54.7% of the center frequency of the transducer.
This bandwidth corresponded to the −20 dB threshold of the
transducer specified by the manufacturer. Gaussian noise was
then added to the filtered matrix using the addNoise function
in the k-Wave toolbox [45] to form a raw channel data frame.

2) Experimental Photoacoustic Data: To acquire experimen-
tal phantom data, a 600 µm-core diameter optical fiber was
inserted into a 7F outer diameter cardiac catheter (Boston Sci-
entific, Marlborough, MA, USA), forming a fiber–catheter pair
with the fiber and catheter tips coincident. This fiber–catheter
pair was inserted into a plastisol phantom, as shown in

Fig. 3(a). The other end of the optical fiber was interfaced with
a Phocus Mobile laser (Opotek, Carlsbad, CA, USA) operating
at a wavelength of 750 nm, a laser energy of 1.4 mJ, and a
pulse repetition frequency of 10 Hz. A Verasonics Vantage
128 scanner connected to a P4-2v transducer was employed
for imaging. The P4-2v transducer was mounted on an UR5e
robot (Universal Robots, Odense, Denmark) via a custom
3-D-printed adapter. This entire system was designed to save
raw channel data and the corresponding synchronized position
of the center of the transducer with respect to the fixed robot
base.

The catheter was initially aligned with the lateral dimension
of the transducer, as shown in Fig. 3(a). To center the catheter
tip in the lateral dimension of the image, the robot translated
the transducer along its lateral dimension, until the peak of
the hyperbolic waveform corresponding to the catheter tip
was centered in the channel data. To center the catheter tip
in the elevation dimension of the transducer, the robot first
rotated the transducer by 90◦, then translated the transducer
along its lateral dimension until the associated photoacoustic
signal was laterally centered in the image, followed by another
90◦ rotation to return to the original alignment between the
catheter and lateral transducer dimension, with the catheter
tip now centered in both the lateral and elevation dimensions
of the transducer. The transducer was then translated 4 mm
along the elevation dimension in steps of 1 mm. At each step,
multiple channel data frames were acquired and stored with the
corresponding robot pose information, resulting in a total of
993 raw channel data frames of the catheter tip at a measured
depth of 25 mm in the phantom.

To acquire experimental ex vivo data, the fiber–catheter pair
described above was inserted into ex vivo chicken breast,
as shown in Fig. 3(b), at a measured depth of 23 mm.
The procedure described above was employed to center the
transducer above the catheter tip in the lateral and elevation
transducer dimensions. A total of 992 channel data frames
were acquired with the transducer translated 4 mm along
the elevation dimension in steps of 1 mm. This experimental
acquisition was then repeated with additional chicken breast
tissue and the catheter tip placed at an increased depth of
46 mm, as shown in Fig. 3(c), and 991 channel data frames
were acquired.
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B. Sound Speed Estimation

To estimate experimental sound speeds, we utilized the
maximum lag one coherence (mLOC) introduced by Zhang
et al. [51]. First, we validated the mLOC-based sound speed
estimation technique on a subset of our simulated dataset
consisting of 95 frames, with known ground truths. Each
frame in this subset consisted of one source and at most one
reflection artifact, with the lateral and elevation positions of the
source constrained within <1 mm from the transducer center
(based on previous results demonstrating greater coherence
of photoacoustic sources and better estimation performance
expectations near an array center [52]). The source axial
positions and sound speeds were not constrained, ranging
20.6–98.4 mm and 1440–1638 m/s, respectively. Time delays
corresponding to sound speeds ranging 1440–1640 m/s with
an increment of 5 m/s were applied to each channel data frame
in this subset, creating a total of 41 separate delayed channel
data frames. The correlation of delayed channel data received
by equally spaced elements (i.e., spatial lags) was calculated
using the normalized spatial coherence function [53]

R̂(m) =
1

NT − m

NT −m∑
i=1

∑n2
n=n1

si (n)si+m(n)√∑n2
n=n1

s2
i (n)

∑n2
n=n1

s2
i+m(n)

(36)

where m is the spatial lag (fixed at one), si (n) is the time-
delayed zero-mean photoacoustic signal received from the
i th element at the nth sampling instant, and n2−n1 is the axial
correlation kernel size (fixed to approximately one acoustic
wavelength). These calculations output a prescan converted
matrix of coherence values with an angular width of π/2 radi-
ans and height 12 cm corresponding to the sector-shaped FOV
of the phased array transducer. To fully enclose the target in
each generated coherence function matrix, a rectangular ROI
of angular width π/3 radians and height 10 mm was centered
on the point (θS, zB), where θS is the azimuthal component
of the known target location in the prescan converted matrix.
The axial position zB is given by

zB =
zScbf

cch
(37)

where cch is the sound speed in the channel data frame, cbf is
the beamformed sound speed, and zS is the axial component
of the known target location in the channel data frame.
A representative sample of these ROIs is shown in Fig. 4(a).
These rectangular ROIs corresponded to annular sectors in the
scan converted images as shown in Fig. 4(b). The maximum
value within the ROI was reported as the mLOC per channel
data frame per sound speed. The sound speed corresponding
to the maximum mLOC per channel data frame was validated
against the known ground truth from simulated data.

The mLOC-based sound speed estimation process summa-
rized above was repeated for a subset of the experimental
datasets described in Section III-A2, after adding Gaussian
noise corresponding to a channel SNR of −5 dB to each chan-
nel data frame using the addNoise function in the k-Wave
toolbox (to improve the performance of the mLOC-based
sound speed estimation technique). The selected raw channel
data frames contained sources with elevation displacements

Fig. 4. Identical regions of interest in (a) pre- and (b) postscan
converted short-lag spatial coherence images (m = 1) of a simulated
photoacoustic point source.

<1 mm from the center of the transducer (based on previous
results [52]), resulting in a total of 199 and 376 frames from
the phantom and ex vivo datasets, respectively.

C. Image Annotation Process for Training and Testing
1) Object Detection-Based Annotated Images: As with pre-

vious implementations of object detection-based point source
localization systems for phased array transducers [42], [54],
[55], the FOV of the phased array transducer in a beamformed
and scan-converted image extends laterally beyond the width
of the raw channel data frame. Therefore, each raw channel
data frame in the simulated, phantom, and ex vivo datasets
was zero-padded to match this FOV to form a zero-padded
channel data frame of dimensions 566 × 926 pixels.

To annotate the zero-padded channel data frames,
we defined two super-classes for sources and artifacts. Each
super-class was then divided into 11 distinct classes based
on the corresponding elevation displacements rounded to and
labeled based on the nearest millimeter (e.g., class 1 con-
sisted of sources with elevation displacements constrained by
−0.5 mm ≤ yS < 0.5 mm and was named “Source-0.0”).
For each zero-padded channel data frame, bounding boxes of
dimensions 64 × 25 pixels were centered on the positions of
the sources and artifacts within the frame. These bounding
boxes were allowed to exist in the zero-padded regions if
required, as shown in Fig. 5(a). A fully annotated image
consisted of the zero-padded channel data frame, the coor-
dinates of the bounding boxes, the elevation-encoded classes
(e.g., “Source-0.0” “Artifact-10.0,” etc.), the source and artifact
position information, and the speed of sound corresponding to
the frame. The ground-truth sound speed was known from
simulated data, and the mLOC-based sound speed estimates
(Section III-B) were used as ground-truth annotations in
experimental data. The totality of fully annotated simulation
images was randomly split into 16 000 training and 4000 test
images. The fully annotated experimental images were only
used during testing (and were not incorporated into the training
set).

2) Instance Segmentation-Based Annotation: The 20 000
simulated, 993 phantom, and 1983 ex vivo channel data frames
(described in Section III-A) were each laterally upsampled by
a factor of 4 to form a resized channel data frame of dimen-
sions 256 × 926 pixels. This lateral upsampling factor was
selected to improve network performance. Unlike the object
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Fig. 5. Examples of (a) bounding box and (b) segmentation mask
annotated images of simulated channel data frames containing a pho-
toacoustic point source and reflection artifact.

detection-based point source localization systems previously
presented by our group [40], [41], [42], [54], [55], an instance
segmentation-based approach to point source localization does
not require input images to match the scan-converted FOV of
the phased array transducer. Therefore, despite the existence of
point source locations outside the lateral limits of the trans-
ducer aperture, zero-padding was not applied to the resized
channel data frames, as shown in Fig. 5(b).

Using the super-classes for sources and artifacts
(Section III-C1), excluding the subdivision based on
elevation displacement information, we annotated the resized
channel data frames. Our theoretical framework (Section II)
was then used to generate ground-truth segmentation masks
of source and artifact waveforms, based on the ground-truth
locations of sources and artifacts as well as the ground-truth
sound speeds. The ground-truth sound speeds were known
for simulated data and based on mLOC (Section III-B) for
experimental data. The number of elements NT and pitch pT

of the transducer modeled in Section III-A1 were multiplied
and divided, respectively, by the lateral upsampling factor
of 4 to match the properties of the resized channel data
frames. The pressure wave thickness (illustrated in Fig. 2)
was selected as wS = 500 µm.

For each photoacoustic source located at x⃗ S , our theoreti-
cal framework provided the coefficients zL(x⃗ S, c), xL(x⃗ S, c),
bL(x⃗ S, c), aL(x⃗ S, c), zU (x⃗ S, c), xU (x⃗ S, c), bU (x⃗ S, c), and
aU (x⃗ S, c) of the hyperbolic curves forming the upper and
lower bounds of the corresponding waveform in the channel
data frame with sound speed c, as described in (20)–(23)
and (28)–(31). For each reflector located at x⃗ R , the param-
eters zL(x⃗ R, c; x⃗ S) and zU (x⃗ R, c; x⃗ S) of the hyperbolic curves
forming the lower and upper bounds, respectively, of the
corresponding reflection artifact waveform were given by

zL
(
x⃗ R, c; x⃗ S

)
= −

wS fS

c
+

∥x⃗ R − x⃗ S∥ fS

c
(38)

and

zU
(
x⃗ R, c; x⃗ S

)
=

wS fS

c
+

∥x⃗ R − x⃗ S∥ fS

c
(39)

respectively. The term (∥x⃗ R − x⃗ S∥ fS/c) in (38) and (39)
corresponds to the axial downshift of the reflection artifact
waveform by the Euclidean distance between the source and
reflector positions (i.e., x⃗ S and x⃗ R , respectively), as presented
in the method by Allman et al. [39] (noted in Section III-A1).
The remaining parameters xL(x⃗ R, c), bL(x⃗ R, c), aL(x⃗ R, c),
xU (x⃗ R, c), bU (x⃗ R, c), and aU (x⃗ R, c) were computed from (21)
to (23) and (29) to (31), after replacing x⃗ S with x⃗ R . These
parameters were used to construct a segmentation mask for
each source and reflection artifact in each image.

For each segmentation mask, a rectangular bounding box
was defined with coordinates selected to minimize the area
fully enclosing the segmentation mask. Unlike the object
detection-based bounding boxes in Section III-C1, these
bounding boxes were located within the transducer aperture
limits even for sources and artifacts located outside the trans-
ducer aperture. Fully annotated segmentation mask images
consisted of the source and/or artifact bounding boxes, the
associated resized photoacoustic channel data frame com-
bined with the segmentation masks, super-classes (i.e., source
or artifact), ground-truth positions, and the speed of sound
corresponding to the frame. The totality of fully annotated
simulated segmentation images were randomly split into train-
ing and test datasets of 16 000 and 4000 images, respectively,
while the fully annotated phantom and ex vivo segmentation
images were only used for testing (i.e., they were not incor-
porated during training).

D. System Architectures and Training Procedures
Fig. 6 overviews the two deep learning-based 3-D pho-

toacoustic point source localization systems we developed
(i.e., Systems A and B). System A [Fig. 6(a)] implemented an
object detection-based approach to 3-D point source localiza-
tion, similarly to our previously published deep learning-based
systems for two dimensions [39], [40], [41], [42], [47], [48],
[54], [55], [56]. System A also consisted of a Faster R-CNN
network [57] with a ResNet-101 [58] feature extractor. This
network was initialized with pretrained weights from the
ImageNet dataset [59], then fine-tuned on the simulated object
detection training dataset described in Section III-C1 with a
batch size of 4 and a base learning rate of 0.001 for 80 epochs
using the Detectron2 platform [60]. This fine-tuning was
performed using four NVIDIA Quadro RTX 8000 GPUs. The
object detection network was trained to simultaneously detect
each waveform present in an input zero-padded channel data
frame, categorize the waveform into one of the 22 elevation-
encoded classes (e.g., “Source-0.0,” “Artifact-10.0,” etc.), and
locate the peak of the detected waveform within the imaging
plane. The network outputs for each input image were format-
ted as a list of object detections consisting of the identified
elevation-encoded class, the lateral and axial object location
(i.e., bounding box pixel coordinates), and a confidence score
between zero and one.

System B [Fig. 6(b)] implemented the two-stage point
source localization system described in Section II-E. The first
stage (i.e., the instance segmentation algorithm) consisted of a
Mask R-CNN network [61] with a ResNet-101 feature extrac-
tor. This network was initialized with pretrained weights from
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Fig. 6. Block diagrams illustrating (a) System A, a single-stage
object detection-based photoacoustic point source localization sys-
tem extended from previous work [39] on 2-D source localization to
achieve 3-D source localization, and (b) System B, a novel instance
segmentation-based simultaneous 3-D photoacoustic point source
localization and sound speed estimation system.

the ImageNet dataset and fine-tuned on the simulated instance
segmentation training dataset described in Section III-C2. This
fine-tuning was performed with a batch size of 4 and a base
learning rate of 0.001 for 20 epochs using the Detectron2
platform on the GPUs listed above. The network was trained to
simultaneously detect acoustic waveforms in the input channel
data frame (which was resized as described in Section III-C2),
classify the detection as a source or artifact, construct a
bounding box around the visible portion of the detected
waveform, and generate a segmentation mask limited by the
bounding box. The network outputs for each input image were
formatted as a list of instance segmentations consisting of the
identified super-class (i.e., source or artifact), the bounding
box coordinates, the associated segmentation mask 9̂, and a
confidence score between zero and one.

The second stage of System B (i.e., simultaneous source
location and sound speed estimation) implemented a least
squares optimization algorithm performing gradient descent on
the objective function J (x̂ S, ĉ, L̂, Û ) defined in (35). For each
segmentation mask 9̂ corresponding to an identified source,
an initial estimate of the source location was performed assum-
ing an elevation displacement of zero and a sound speed of
1540 m/s. The peaks of the hyperbolic curves L̂ and Û forming
the boundaries of the segmented region 9̂ were identified and
averaged to obtain the initial estimates of the lateral and axial
displacements of the source from the center of the transducer.
Gradient descent was performed using Newton’s optimization
method [62] for 128 iterations with the output of each iteration
provided as an input to the next iteration. In each iteration, the
first- and second-order derivatives of the objective function
J (x̂ S, ĉ, L̂, Û ) were computed using the in-built autogradient
functionality of the PyTorch library [63]. A scaling factor of
0.1 was applied to each computed increment of the estimated
source location, sound speed, and pressure wave thickness wS .
The estimated source elevation position was constrained to be

TABLE II
CONFIDENCE SCORE THRESHOLDS FOR SOURCES AND ARTIFACTS

DETECTED BY SYSTEMS A AND B

non-negative after each iteration to account for the elevation
symmetry of the segmented waveform. The final iteration
of the gradient descent algorithm yielded the output source
location and sound speed estimates of System B.

E. System Performance Metrics

1) Detection and Segmentation Performance: To quan-
tify the detection performance of the object detection and
instance segmentation networks on the simulated test datasets
(Section III-C), we used the super-classes (i.e., source or arti-
fact) and bounding box coordinates of network detections and
ground truths to classify network detections as true positives,
misclassifications, or false positives using the three criteria
defined in our previous publication [42], i.e., 1) the confidence
score of the given detection was above the super-class-specific
confidence score threshold; 2) a ground truth of the same
super-class was present in the associated annotations; and
3) the intersect-over-union (IOU) between the bounding boxes
of the detection and ground-truth annotations exceeded 0.5.
The confidence score threshold was varied from zero to one
to generate the receiver operating characteristic (ROC) curves
for each super-class and each network in the correspond-
ing simulated test dataset. The area under the curve (AUC)
corresponding to each ROC curve determines the quality of
the network detections [64], [65]. From the ROC curves, the
method presented by Allman et al. [39] determined the optimal
confidence score thresholds for each super-class and each
network, which is reported in Table II. Network detections
above these confidence score thresholds were then retained to
compute the recall, precision, and F1 scores [66] as well as
the misclassification and missed detection rates [39], [42] for
the source and artifact super-classes of simulated data and for
the source class of experimental data.

For simulated data, the source detection rates were reported
as functions of ground-truth lateral, elevation, and axial posi-
tions in the ranges −22.5 to 22.5 mm, −0.625 to 10.625 mm,
and 15 to 105 mm, respectively. Each range was divided into
nine groups with 5, 1.25, and 10 mm range, respectively
(e.g., a group of lateral errors associated with ground-truth
lateral positions ≥−22.5 and <−17.5 mm). For experi-
mental data, the source detection rates were reported as
functions of the ground-truth elevation positions in the range
−0.5 to 4.5 mm, separated into five groups, each containing
a 1 mm range. There was insufficient variation to additionally
report results as functions of lateral and axial positions.

To quantify the instance segmentation performance of the
instance segmentation network on the simulated test dataset,
the IOU between the segmentation masks of true positive
detections and corresponding ground-truth annotations was
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measured. The segmentation IOU of sources was reported
separately for ground-truth source lateral, elevation, and axial
positions in the groups defined above for the simulated test
datasets. In addition, the segmentation IOU of sources was
reported separately for ground-truth sound speeds in the range
1427.5–1652.5 m/s, separated into nine groups with a 25 m/s
range per group. For each group of simulated data, box-
whisker plots displaying the median (horizontal line), the
interquartile range (box height), and the range (whisker height)
excluding outliers (defined as deviations from the median by
>1.5 times the interquartile range, displayed as dots) were
employed to represent these characterizations. For experimen-
tal data, only the aggregated minimum, median, and maximum
segmentation IOU values were reported (given the minimal
variation in the lateral, elevation, and axial positions).

2) Point Source Localization Performance: To quantify point
source localization performance on the simulated and exper-
imental test datasets, the source location estimates output by
each system were first extracted. For System A, the true
positive object detection network detections corresponding to
the source super-class were retained, and the lateral and axial
components of each source location estimate were considered
as the center of the corresponding bounding box annotation,
assuming a fixed sound speed of 1540 m/s. The elevation
source component was obtained from the corresponding class
name (e.g., “Source-6.0” corresponded to an elevation dis-
placement of 6 mm). For System B, the estimated point
source location was obtained from the second stage output.
These estimates were then compared with the corresponding
ground-truth source locations, with the elevation components
of both the ground truth and estimated source locations
constrained to be non-negative to account for the elevation
symmetry of the received waveform. The absolute lateral,
absolute elevation, absolute axial, and Euclidean distance
errors were measured for each retained network detection.
To characterize the dependence of the source localization
performance on the ground-truth source location and speed of
sound in the simulated test datasets, the source location esti-
mates were grouped based on the corresponding ground-truth
lateral position, elevation position, axial position, and sound
speed groupings described in Section III-E1. For each group
of simulated data, box-whisker plots (displaying the details
summarized in Section III-E1) were employed to represent
these characterizations, in addition to reporting the aggregated
mean ± standard deviation of the absolute lateral, absolute
elevation, absolute axial, and Euclidean distance errors for
simulated and experimental data.

3) Sound Speed Estimation Performance: To quantify the
sound speed estimation performance of System A, System B,
and the mLOC-based method described in Section III-B,
we first collated the images in the simulated test datasets
containing true positive outputs from these systems. We then
subtracted either the assumed sound speed of 1540 m/s, the
sound speed estimates output by the second stage of System
B, or the mLOC-based sound speed estimates from the cor-
responding ground-truth sound speeds to obtain sound speed
estimation errors. These errors were disaggregated into the
previously defined groups of ground-truth source positions and

Fig. 7. ROC curves for sources and artifacts achieved with (a) System A
and (b) System B applied to simulated data.

sound speeds in simulated data (Section III-E1), in addition to
reporting the mean ± one standard deviation of absolute sound
speed estimation outputs of System B and mLOC applied to
experimental data.

IV. RESULTS

A. Detection Performance With Systems A and B
Fig. 7 shows ROC curves for simulated source and artifact

detections output by System A and System B in the object
detection and instance segmentation test datasets, respectively.
These ROC curves reveal that the object detection network
forming System A was more robust to false positive errors
than the instance segmentation network forming the first stage
of System B. This observation is consistent with the increased
AUC values (first row of Table III) achieved by System A
compared to System B. After confidence score-based filtering
(detailed in Section III-E), both Systems A and B achieved
similarly high precision scores (second row of Table III) rang-
ing 99.73%–99.97% across sources and artifacts. Overall, the
quality of detections was high for Systems A and B for both
sources and artifacts with AUC values ranging 0.958–0.990.
Table III also reports the recall, F1 scores, misclassification
rates, and missed detection rates of the object detection
network (System A) and the instance segmentation network
(System B) in the object detection and instance segmentation
test datasets, respectively, for both sources and artifacts. These
results highlight the robustness of our two photoacoustic point
source detection approaches (i.e., object detection in System A
and instance segmentation in System B) to false positives and
false negatives associated with detecting photoacoustic point
sources and artifacts.

Fig. 8 shows the source detection rates obtained with
the simulated test datasets. The source detection rate of
System A depended on the ground-truth lateral, axial, and
elevation displacements of the source from the center of
the transducer, with detection rates ranging 73.61%–92.34%,
84.67%–91.89%, and 78.99%–93.87%, respectively, as shown
in Fig. 8(a), (c), and (e), respectively. In comparison, System
B achieved a more consistent source detection perfor-
mance across the lateral, axial, and elevation positions, with
detection rates ranging 98.61%–100%, 98.80%–100%, and
99.30%–99.81%, respectively, as shown in Fig. 8(b), (d), and
(f), respectively. These results demonstrate the improved abil-
ity of the instance segmentation approach utilized in System
B to detect photoacoustic point sources (relative to the object
detection approach utilized in System A).
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TABLE III
DETECTION PERFORMANCE ACHIEVED WITH OBJECT DETECTION (SYSTEM A) AND INSTANCE SEGMENTATION (SYSTEM B) NETWORKS IN

SIMULATED, PHANTOM, AND EX VIVO TEST DATASETS

Fig. 8. Summary of detection performance quantified by source
detection rates (i.e., recall values) based on bounding boxes associated
with System A and System B as functions of ground-truth lateral, axial,
and elevation positions in the simulated test datasets.

Fig. 9 shows the source detection rates of Systems A and
B in the phantom and ex vivo datasets as functions of the
ground-truth source elevation position relative to the center
of the transducer. The ground-truth axial and lateral positions
were constant within each dataset, and the ground-truth eleva-
tion positions are based on known robot translations, as noted
in Section III-A2. The elevation source detection rates ranged
87.94%–100%, with the exception of the phantom results
at elevation positions 4 and 0 mm with Systems A and B,
respectively (which were 50.75% and 62.31%, respectively).
The corresponding recall values, F1 scores, misclassification
rates, and missed detection rates are reported in the phantom
and ex vivo columns of Table III. The generally similar perfor-
mance (i.e., within <10%) across simulated and ex vivo results
demonstrates the ability of our simulation-trained networks to
detect photoacoustic targets in real data.

Fig. 9. Source detection rates based on source bounding boxes as
functions of the ground-truth elevation positions in the phantom and ex
vivo datasets.

B. Segmentation Performance With System B

Fig. 10 shows the IOU between segmentation masks cor-
responding to the ground-truth waveforms and outputs of the
instance segmentation network (which forms the first stage of
System B), as functions of the ground-truth lateral [Fig. 10(a)],
elevation [Fig. 10(b)], and axial [Fig. 10(c)] positions and as a
function of sound speed [Fig. 10(d)], evaluated for sources in
the simulated instance segmentation test dataset. In Fig. 10(a),
the median segmentation performance was highest (i.e., 0.977)
for sources laterally centered in the transducer FOV and
decreased to 0.949 with lateral displacement from the center.
In Fig. 10(b), the median segmentation IOU increased from
0.956 to 0.972 as the source elevation position increased
from 0 to 10 mm. The segmentation performance remained
consistently high across the simulated ranges of source axial
positions and sound speeds in Fig. 10(c) and (d), respectively.
These results highlight the ability of System B to accurately
segment waveforms corresponding to 3-D photoacoustic point
sources across a wide range of simulated source positions and
sound speeds.

Table IV reports the minimum, median, and maximum IOU
between ground-truth segmentation masks and outputs of the
instance segmentation network. These values were reduced for
the phantom and ex vivo datasets relative to the corresponding
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Fig. 10. Summary of segmentation performance based on the IOU
between ground-truth segmentation masks and true positive segmen-
tation masks output by the instance segmentation network (i.e., first
stage of System B) as functions of the ground-truth (a) lateral position,
(b) elevation position, (c) axial position, and (d) sound speed, evaluated
for sources in the simulated instance segmentation test dataset.

TABLE IV
MINIMUM, MEDIAN, AND MAXIMUM IOU VALUES BETWEEN

GROUND-TRUTH SEGMENTATION MASKS AND TRUE POSITIVE

SEGMENTATION MASKS OUTPUT BY INSTANCE SEGMENTATION

NETWORK (I.E., FIRST STAGE OF SYSTEM B) IN

SIMULATED, PHANTOM, AND EX VIVO DATASETS

values in the simulated dataset (indicating reduced segmen-
tation performance). In particular, the median IOU values
obtained with the experimental datasets deviated by 27%–35%
from that obtained with simulated data.

C. Point Source Localization Performance

The simulation columns of Table V report the mean ±

one standard deviation of absolute lateral, elevation, and axial
errors, as well as Euclidean distance errors, between the
ground-truth locations of point sources defined as true pos-
itives and the corresponding source location estimates output
by Systems A and B. While System A achieved reduced lateral
and elevation errors compared to System B, both systems
achieved mean absolute errors <1 mm in these dimensions.
However, the Euclidean distance errors are most representa-
tive of overall localization performance. System B achieved
smaller axial and Euclidean distance errors compared to Sys-
tem A. The improvements in axial and Euclidean localization
performance are likely due to the simultaneous estimation
of sound speeds by System B, as opposed to the assumed
fixed sound speed of 1540 m/s with System A. These results
demonstrate the ability of System A (an extension of our
previously demonstrated object detection-based approach [39],

[42]) and System B (our novel instance segmentation and
optimization-based approach) to localize photoacoustic point
targets in three dimensions in simulated data across a wide
range of source locations and sound speeds.

Fig. 11 shows localization errors for true positives in the
simulated test datasets, as functions of the ground-truth source
lateral, elevation, and axial positions. Overall, Systems A and
B achieved comparable lateral [Fig. 11(a)–(c)] and elevation
[Fig. 11(d)–(f)] localization errors across the range of sim-
ulated source positions. In Fig. 11(a), System B generally
achieved smaller lateral errors than System A for ground-truth
source lateral positions ranging −5 to 5 mm. However, unlike
System A, both the median and interquartile range of the
lateral errors of System B increased with lateral displacement
from the center of the transducer. Elevation errors with System
B also increased as the elevation displacement increased
from 0 to 2.5 mm [Fig. 11(e)]. System B achieved consis-
tently smaller axial errors than System A across the ranges
of source lateral, elevation, and axial positions investigated
[Fig. 11(g)–(i), respectively]. As shown in Fig. 11(i), axial
errors were reduced with System B as axial displacements
increased, while the axial errors of System A increased with
axial displacements. Overall, these results demonstrate that
the localization performance of Systems A and B largely
depends on the source position along the corresponding
dimension.

Fig. 12 shows localization errors for true positives in the
simulated test datasets, as functions of the ground-truth sound
speed. System B achieved smaller median lateral errors and
larger median elevation errors than System A across the range
of simulated sound speeds (Fig. 12(a) and (b), respectively).
In addition, the median lateral and elevation errors of Systems
A and B remained consistent across the simulated range of
sound speeds. In Fig. 12(c), System B (which simultaneously
estimated source locations and sound speeds) had smaller
axial errors than System A (which assumed a fixed sound
speed of 1540 m/s). The axial errors of System A increased
as the ground-truth sound speed deviated from 1540 m/s;
this relationship was not observed with System B. These
results demonstrate the advantage of simultaneously estimating
source locations and sound speeds to improve point source
localization performance.

Fig. 13 shows example photoacoustic channel data frames
in the phantom and ex vivo datasets overlaid with results
generated by Systems A and B, along with correspond-
ing ground-truth and source location estimates overlaid on
DAS-beamformed images. These DAS images were recon-
structed with sound speeds output by System B (i.e., 1485 and
1570 m/s in the phantom and ex vivo data, respectively). The
bounding boxes generated by System A are axially centered
on the waveform peak, but corresponding source location esti-
mates are axially shifted relative to the ground truth, due to the
1540 m/s sound speed assumed by System A. The bounding
box in Fig. 13(a) is laterally displaced from the center of the
image, resulting in a 0.9 mm lateral localization error. The
distal boundary of the segmentation mask in Fig. 13(c) is
distorted from the expected hyperbolic shape, resulting in a
1.9 mm elevation localization error.
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TABLE V
MEAN ± STANDARD DEVIATION OF DISTANCE ERRORS OF SYSTEMS A AND B IN SIMULATED, PHANTOM, AND EX VIVO TEST DATASETS

Fig. 11. Summary of localization performance based on absolute (a), (b), and (c) lateral, (d), (e), and (f) elevation, and (g), (h), and (i) axial position
errors of true positive sources output by Systems A and B in the simulated test datasets as functions of ground-truth source (a), (d), and (g) lateral,
(b), (e), and (h) elevation, and (c), (f), and (i) axial positions.

To summarize the overall localization performance of exper-
imental data, the phantom and ex vivo columns of Table V
report the mean ± one standard deviation of the absolute
lateral, elevation, and axial distance errors, as well as the
Euclidean distance errors, achieved with Systems A and
B. The errors of System B were generally lower than or

similar to those of System A, with the mean Euclidean
distances being most representative of the overall localiza-
tion errors. These results demonstrate the advantage of the
instance segmentation and optimization-based approach uti-
lized in System B, relative to the object detection-based
approach utilized in System A, when tasked with accurately

Authorized licensed use limited to: Johns Hopkins University. Downloaded on May 30,2025 at 11:40:58 UTC from IEEE Xplore.  Restrictions apply. 



800 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 72, NO. 6, JUNE 2025

Fig. 12. Summary of localization performance based on absolute (a) lateral, (b) elevation, and (c) axial errors of true positive sources output by
Systems A and B in the simulated test datasets as functions of the ground-truth sound speed.

Fig. 13. Example photoacoustic channel data frames of the catheter
tip in (a) phantom and (b) ex vivo tissue overlaid with source detections
output by System A. Corresponding source segmentations output by
System B for the same (c) phantom and (d) ex vivo channel data.
Corresponding DAS beamformed images overlaid with estimates output
by Systems A and B and compared to the ground-truth source locations
for the same (e) phantom and (f) ex vivo data.

localizing photoacoustic point sources in experimental
data.

D. Sound Speed Estimation Performance
Fig. 14 shows the mean and standard deviation of the

absolute sound speed estimation errors of Systems A and B

TABLE VI
COMPARISON OF MEAN ± ONE STANDARD DEVIATION OF SOUND

SPEED ESTIMATES OBTAINED WITH SYSTEM B AND MLOC
APPLIED TO PHANTOM AND EX VIVO DATASETS

as functions of the ground-truth source positions and medium
sound speeds. System B (which estimated the sound speed)
consistently achieved lower sound speed estimation errors
compared to System A (which assumed a fixed sound speed of
1540 m/s) across the simulated ranges of lateral, elevation, and
axial source positions (i.e., Fig. 14(a)–(c), respectively). The
sound speed errors of System A increased as the ground-truth
sound speed deviated from the value of 1540 m/s assumed
by System A, while System B achieved more consistent
sound speed estimation errors across the simulated range of
sound speeds [Fig. 14(d)]. Overall, the mean ± one standard
deviation of absolute sound speed estimation errors achieved
with System B was 19.22 ± 26.26 m/s. These results highlight
the ability of System B to estimate the sound speed across
wide ranges of source positions and sound speeds.

Table VI reports the mean ± one standard deviation of
the sound speed estimates from System B and mLOC, when
applied to experimental photoacoustic sources with no lateral
or elevation displacement from the transducer center. To set
baseline expectations for these results, Fig. 14(c) and (d)
report mLOC errors obtained with a subset of the simulated
data containing lateral and elevation displacements <1 mm
from the transducer center. In Fig. 14(c), the mLOC-based
method achieved reduced sound speed errors at shallower
target depths, while the opposite trend was obtained with
System B. In Fig. 14(d), larger mLOC errors were achieved as
the true sound speed deviated from 1540 m/s, while System B
was relatively unaffected by the magnitude of the true sound
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Fig. 14. Absolute sound speed estimation errors achieved with Sys-
tem A (assuming a fixed sound speed of 1540 m/s), System B (after
least squares optimization of sound speeds), and mLOC applied to
the simulated test datasets, reported as functions of the ground-truth
source (a) lateral, (b) elevation, and (c) axial positions and (d) medium
sound speeds. The errors obtained with mLOC set expectations for
experimental results (reported in Table VI). Error bars show ± one
standard deviation.

speed. Despite the observed differences, similar sound speed
values (i.e., within one standard deviation) were achieved with
both approaches applied to experimental data, as reported in
Table VI, which further demonstrates the successful transla-
tion of System B to experimental data.

V. DISCUSSION

A. Overview of Contributions

This article presents two novel approaches (i.e., Systems
A and B) to train and implement deep learning-based tech-
niques that detect and localize a photoacoustic source in
three spatial dimensions, based on the input of a single
2-D channel data frame. First, we extended the two-class
classification model proposed by Allman et al. [39] to a
22-class classification model to encode elevation displace-
ment information, resulting in System A [Fig. 6(a)]. Second,
we introduced a novel theoretical framework (Section II)
relating 3-D point source locations to the corresponding
waveform shapes in photoacoustic channel data. Third,
we utilized our novel theoretical framework to relate pho-
toacoustic point source positions to channel data waveform
shapes, then we employed theory-based least squares opti-
mization to simultaneously estimate source locations and
sound speeds, resulting in System B [Fig. 6(b)]. The suc-
cess of Systems A and B offers a significant improvement
over previously published 2-D point source localization sys-
tems [39], [40], [42], [43], [47], [48], [54], [55], [56], [67],
[68], [69], [70], [71]. This success was characterized with
respect to detection (Figs. 7–9 and Table III), segmentation
(Fig. 10 and Table IV), localization (Figs. 11 and 12, and
Table V), and sound speed estimation (Fig. 14 and Table VI)
performance in simulated and experimental data.

The 22-class classification model utilized in System A,
enabled differentiation among 11 elevation displacements
of point sources and reflection artifacts. This approach is
an upgrade from 2-D to 3-D photoacoustic point source
localization, utilizing an object detection-based approach to
detect, classify, and localize sources in 3-D. As reported in
Table III, the F1 scores of System A obtained from simulated
data (i.e., 94.00% and 94.66% for sources and artifacts,
respectively) are comparable to those of our previously pub-
lished 2-D system obtained with simulated data (98.3% and
90.6% for sources and artifacts, respectively [42]), despite the
increased complexity of the 22-class classification problem.

System B is the first known deep learning-based sys-
tem utilizing the instance segmentation paradigm to detect
and localize photoacoustic point sources in three dimen-
sions. The ≥90.17% recall performance of System B on
simulated and experimental data (Table III) validates the
relationship between the point source location x⃗ S and the cor-
responding waveform shape 9(x⃗ S, c) derived in Section II-D.
Allman et al. [39] previously hypothesized that the object
detection-based point source localization systems were learn-
ing this underlying relationship to accurately detect and
distinguish between sources and artifacts. We introduced our
theoretical framework to explicitly characterize this relation-
ship and thereby improve the performance of photoacoustic
point source localization systems. This framework enabled an
improved formulation of the point source localization problem
as an instance segmentation problem compared to previous
object detection-based formulations [39], [42].

B. Promise of Instance Segmentation Approach
System B leveraged the instance segmentation-based formu-

lation to achieve improved precision, recall, F1 scores, and
missed detection rates in simulated data relative to System A
(Table III). While System A achieved higher AUC values
than System B for both sources and artifacts (indicating that
System A is less likely to output false positive detections),
System B achieved higher recall and lower missed detection
rates compared to System A (indicating that System B is less
likely to miss ground-truth sources). These competing differ-
ences necessitate a single metric (e.g., F1 score) combining
metrics such as precision and recall to enable comparisons
across systems.

With better F1 scores, System B emerges as providing
improved detection performance relative to System A when
applied to simulated data. The segmentation performance of
System B remained consistently high across the simulated
ranges of source positions and sound speeds [Fig. 10]. In addi-
tion, System B only misclassified two simulated sources as
artifacts and only missed eleven sources, out of the 4000 total
sources in the simulated dataset (Table III), further demon-
strating its ability to learn the relationships among the source
axial position, sound speed, and corresponding waveform
shape.

The F1 scores ranging 81.78%–94.17% achieved by Sys-
tem B with the experimental datasets (Table III) demonstrate
the ability of our deep learning-based point source localiza-
tion system to correctly identify photoacoustic point sources
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in experimental data. The similar mean Euclidean distance
errors of 1.46, 1.58, and 1.55 mm achieved by System B
in the simulated, phantom, and ex vivo datasets, respectively
(Table V), validate our theoretical framework and instance
segmentation-based approach to point source localization. The
reduced mean Euclidean distance errors achieved by System B
compared to System A in the simulated and experimen-
tal datasets (Table V) further demonstrate the advantages of
our novel theoretical framework over the extension of our
previously presented object detection-based approach [39],
[42] to 3-D point source localization. Overall, these results
offer a promising new direction for a theory-based instance
segmentation approach to photoacoustic point source localiza-
tion in three dimensions (which are also applicable to two
dimensions).

C. Sound Speed and Localization Performance Insights
There are two insights related to the characterization of the

localization errors of Systems A and B as functions of the
ground-truth sound speed. First, the lateral [Fig. 12(a)] and
elevation [Fig. 12(b)] errors of System A were independent of
the sound speed, while the axial errors increased as sound
speed deviated from 1540 m/s [Fig. 12(c)]. This increase
is likely due to the axial position estimates of System A
being derived from the axial positions of the corresponding
bounding boxes using the fixed sound speed of 1540 m/s as
a scaling factor. The second insight is that System B, which
estimated sound speed in addition to point source locations,
achieved consistent median lateral, elevation, and axial errors
across the simulated range of sound speeds (Fig. 12(a)–(c),
respectively). These two insights, combined with the overall
localization errors of Systems A and B (Table V), as well as
the localization errors corresponding to sound speeds within
and outside the range 1527.5–1552.5 m/s (Fig. 12), demon-
strate the importance of estimating sound speed to improve
point source localization performance.

D. Impact of Image Size
Systems A and B both benefited from network perfor-

mance improvement techniques (i.e., zero-padding and image
resizing) that were previously presented [42]. System A was
required to extrapolate source positions from partially visible
waveforms (similar to 2-D photoacoustic point source local-
ization systems for phased array transducers [40], [42], [54],
[55]). Therefore, zero-padding was applied to channel data
frames in the object detection dataset to accommodate the
placement of bounding boxes outside the visible channel data
region, but these zero-padded channel data frames were not
required to be resized. While zero-padding was not applied to
channel data frames for System B, channel data frames were
laterally upsampled by a factor of four to enable the high
detection performance of System B. These results indicate
the existence of an optimal size of the channel data frames
for a given selection of neural network, transducer, imaging
depth, and other simulation parameters. If it is necessary to
include axial resampling and zero-padding in the presented
theoretical framework in future applications, we detail the
required modifications in the Appendix.

E. Limitations

One potential limitation of our theoretical framework is the
absence of effects related to signal amplitude (e.g., attenuation,
sensor directivity, etc.) or waveform shapes (e.g., distortion
and attenuation arising from heterogeneities in tissue [72], [73]
or bone [37], [74]). However, our previous deep learning-based
point source localization systems have performed well by
applying histogram matching to experimental data using simu-
lated data as a reference [42]. In addition, previous 2-D object
detection deep learning-based systems successfully detected
and localized optical fibers [39], needle tips [40], [41], and
catheter tips [42] in phantom [39], [40], [41], ex vivo [40],
[42], and in vivo environments [42], despite assumptions of
a homogeneous medium with a uniform speed of sound.
Methods that compensate for heterogeneity-induced waveform
distortions [75], [76], [77], [78] could potentially be incorpo-
rated, if necessary.

Considering memory limitations, the increase in GPU
memory requirements for the 3-D photoacoustic simulations
(relative to the 2-D simulations performed in our previous
publication [42]) necessitated the selection of the continuous
model of the transducer (Section III-A1). This necessity con-
flicts with the previous recommendation by Allman et al. [48]
to use a discrete model for improved network performance
in experimental data, suggesting room for additional improve-
ments with more memory. The associated increased memory
requirement also resulted in a reduced range of simulated
lateral positions in the object detection and instance segmen-
tation datasets (Table I) compared to our previous work [42].
Although the lateral dimension was reduced due to GPU
memory limitations, sources both within and outside the lateral
aperture limits of the transducer were included in the simula-
tion, which is necessary to enable deep learning-based point
source localization systems to detect sources outside the lateral
limits of the transducer [54], [55]. Therefore, it is promising
that despite the GPU memory limitations, we developed two
3-D point source localization systems (i.e., Systems A and B)
that can detect point sources outside the lateral limits of the
transducer.

F. Potential Future Applications

The proposed object detection-based and instance
segmentation-based systems for photoacoustic point source
localization have four potential applications. First, these
methods may be integrated with our previously presented deep
learning-based photoacoustic visual servoing systems [40],
[41] to autonomously track surgical tool tips such as needle
tips and catheter tips during interventional procedures such
as percutaneous liver biopsies and cardiac catheterizations,
respectively. Due to the elevation symmetry of the received
waveform and the non-negative elevation displacements
output by Systems A and B (Section III), additional logic is
required to track surgical tool tips with negative displacements
relative to the transducer center. Second, the provided point
source locations may be overlaid on ultrasound images
that offer real-time visualization of the anatomical details
surrounding tool tips [39]. Third, the sound speed estimates
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from System B may be provided in real time to assess tissue
properties, as well as to assist with real-time ultrasound
and/or photoacoustic image formation. Finally, the associated
techniques may be extended to other applications of computer
vision [79] and deep learning in photoacoustics [68] and
biomedical optics [80], [81], including the potential to
disambiguate tool tips from nearby chromophores with novel
multispectral approaches [82], [83], [84], [85], [86].

VI. CONCLUSION

This work is the first to present two deep learning-based
approaches to detect and localize photoacoustic point sources
with 3-D displacements relative to an ultrasound transducer
in channel data, with potential applicability to numerous
surgical and interventional procedures. We successfully trained
an object detection-based approach to detect and localize
photoacoustic point sources using an elevation-encoded clas-
sification model (System A). We also derived a theoretical
framework relating the 3-D point source location and speed
of sound to the shape of the waveform in the corresponding
channel data frame, then trained an instance segmentation
network to identify and segment waveforms corresponding to
photoacoustic point sources in resized channel data frames,
and estimate the corresponding point source locations from
the segmented waveform shapes (System B). We character-
ized the detection, localization, and sound speed estimation
performance of this network after theory-based optimizations,
validating our theoretical framework. We then demonstrated
the improvement in localization performance with simultane-
ous sound speed estimates, demonstrating the importance of
accurate sound speed information to the task of point source
localization. The two systems presented in this article have the
potential to localize and track needle tips, catheter tips, and
other surgical tool tips in numerous surgical and interventional
procedures, with System B being the recommended approach
going forward considering its overall performance.

APPENDIX
INCORPORATING NETWORK PERFORMANCE

IMPROVEMENT TECHNIQUES INTO
THEORETICAL FRAMEWORK

Our theoretical framework may be adapted to accommodate
the network performance improvement techniques of image
resizing and zero-padding presented in our previous work [42].
In particular, as described in Section III-C2, the lateral resam-
pling operation required corresponding modifications of the
transducer parameters NT and pT . In addition, if the channel
data frames were required to be resampled along the axial
dimension by a factor znew, the corresponding transducer
sampling frequency f ′

S could be obtained from the original
sampling frequency fS as

f ′

S = fSznew (40)

to obtain the corrected waveform shapes in the resam-
pled frames. Finally, while the zero-padding operation was
deemed inapplicable to the instance segmentation datasets

in Section III-C2, performing this operation would require
corrected parameters x ′

L(x⃗ S, c) and x ′

U (x⃗ S, c) given by

x ′

L

(
x⃗ S, c

)
= xL

(
x⃗ S, c

)
+ (nZ pT ) (41)

and

x ′

U

(
x⃗ S, c

)
= xU

(
x⃗ S, c

)
+ (nZ pT ) (42)

respectively, where nZ is the number of columns added to the
left side of the channel data frame during the zero-padding
process.
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