
Development of a ROS2-based Photoacoustic-Robotic Visual
Servoing System

Taylor R. Folka, Mardava R. Gubbib, and Muyinatu A. Lediju Bellb,c,d,e

aDepartment of Bioengineering, Harvard University, Boston, MA
bDepartment of Electrical and Computer Engineering, Johns Hopkins University, Baltimore,

MD
cDepartment of Biomedical Engineering, Johns Hopkins University, Baltimore, MD

dDepartment of Computer Science, Johns Hopkins University, Baltimore, MD
eDepartment of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD

ABSTRACT

A key component of many robotic and surgical procedures is the ability to effectively visualize and track
surgical tool tips. In this paper, we introduce a real-time deep learning photoacoustic visual servoing system
that uses ROS2 and Moveit2 to make and execute robot path planning decisions in order to track and maintain
visualization of tool tips. This system also uses Detectron2 and 2D simulated photoacoustic channel data to
train the deep neural network. The performance of this ROS2-based deep learning visual servoing system is
compared to that of a deep learning-based visual servoing system that utilizes ROS as its software system, and
Detectron and 2D simulated data to train its neural network. Experiments were conducted with a plastisol
phantom. Needle tip tracking performance with the ROS2-based visual servoing system outperformed that of
the ROS-based system by 23.53% in phantom tissue. These results demonstrate the benefits of upgrading the
robot operating system to ROS2 for improved deep learning-based visual servoing and tracking of interventional
tool tips.

1. INTRODUCTION

Tool tip tracking is an essential component of surgical and interventional procedures. The most commonly
used tracking systems are ultrasound-based visual servoing systems, with more recent approaches incorporating
deep learning to improve detection.1,2 However, the effectiveness of ultrasound-based visual servoing is lim-
ited in acoustically challenging environments.3 To overcome expected challenges with ultrasound imaging in
these environments, photoacoustic imaging can be used. In contrast to ultrasound imaging, which relies on the
transmission and reception of sound waves to form images, photoacoustic imaging uses light to produce acous-
tic signals that are detected by ultrasound detectors.4,5 This photoacoustic approach combines the benefits
of optical and acoustic imaging techniques. Photoacoustic imaging is particularly advantageous in acoustically
challenging environments because it only requires one-way acoustic travel from the light source to the ultrasound
receiver, unlike the round-trip acoustic travel necessary for conventional ultrasound imaging.

Previous work from our group demonstrated the successful use of photoacoustic image-based visual servoing
systems for the continuous tracking of surgical tool tips.6 In addition, we successfully implemented deep learning
into the photoacoustic visual servoing system to better discriminate between sources and artifacts in images, as
opposed to the conventional method of beamforming, which depends on mathematical models that do not account
for multiple potential sources of photoacoustic image artifacts.7 The use of deep learning to detect sources of
interest in the raw sensor data before image formation is advantageous with respect to tool tip tracking. This
detection was facilitated by using the Detectron8 platform to train the neural network.

Our initial deep learning-based visual servoing system implementations utilized ROS as its software com-
ponent. However, a newer and more advanced version of ROS called ROS2 has been developed and launched
since these initial demonstrations. Improvements with ROS2 include increased message reliability, multi-thread
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execution, and real-time processing.9 These improvements provide greater efficiency for real-time systems. One
additional upgrade available is Detectron210 (as opposed to Detectron8), which offers greater speed, accuracy, and
flexibility for object detection. This paper presents a deep learning-based photoacoustic-robotic visual servoing
system that uses ROS2 for its software components and Detectron2 to train the deep neural network.

2. METHODS AND MATERIALS

2.1 Visual Servoing System

Fig. 1 shows a workflow diagram of the photoacoustic visual servoing system used in this work. First,
a Phocus Mobile laser (Opotek, Carlsbad, CA, USA) interfaced to a 600 µm core diameter optical fiber was
utilized to transmit pulsed laser light at a rate of 10 Hz and with a fixed wavelength of 750 nm. Each pulse of
the laser triggered the acquisition of a frame of raw radiofrequency photoacoustic channel data with a Vantage
128 ultrasound scanner (Verasonics Inc., Kirkland, WA, USA) interfaced to a Verasonics P4-2v phased array
ultrasound probe. Each channel data frame was provided to a deep learning-based point source localization
system using the ROS2 framework. The detected coodinates correspond to the tip of the free end of the optical
fiber. This fiber tip can be interfaced with the tip of a surgical or interventional tool (e.g., a catheter11 or hollow
core biopsy needle7), which was not implemented in this work for simplicity.

Similar to previous work from our group,7,12,13 our point source localization system consisted of a Faster
R-CNN network14 with a ResNet-10115 feature extractor, as shown in Fig. 2. This network was provided with
a photoacoustic channel data frame acquired by the ultrasound probe as an input. The output was an estimate,
U
p̂(n), of the fiber tip location in the coordinate frame U along with a confidence score, d (n), ranging zero to

one indicating the likelihood that the output corresponded to the physical fiber tip. Because this point source
localization system did not provide elevation displacement estimates, the y-dimension of

U
p̂(n) was set to zero.

For robustness, the fiber tip position estimates were compared across five consecutive frames. If the fiber tip
was visible in each frame with a confidence score d (n) > 0.7 and the estimated position of the fiber tip did not
change by more than 1 cm across 5 frames (i.e., corresponding to a maximum speed of 2 cm/s), then the location
estimate was labeled as valid.

The coordinates extracted from the point source localization system were transformed to the robot coordinate
frame, then provided to a MoveIt2-based (PickNik Robotics, Boulder, CO, USA) motion planning algorithm to
center the probe above the fiber tip using a UR5e robot (Universal Robots, Odense, Denmark). The probe was
attached to the end effector of the robot using a custom 3D-printed adapter. Moveit2 created a motion plan

Figure 1. Block diagram illustrating the updated photoacoustic visual serving system.
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Figure 2. Architecture diagram of Faster R-CNN network with ResNet-101 feature extractor used in ROS2-based photoa-
coustic visual servoing system.

based on the current location of the probe relative to the robot base frame, and the desired location of the
probe based on

U
p̂(n). The successfully generated motion plan was then executed with the robot to center the

ultrasound probe above the fiber tip. The cycle then repeated with the next pulse of the laser.

2.2 Simulated Datasets to Train and Validate Photoacoustic Point Source Localization

To train and validate our deep learning-based photoacoustic point source localization system, we simulated
20,000 photoacoustic channel data frames using the k-Wave16 toolbox in MATLAB. We simulated a single source
of diameter 100 µm and up to one reflection artifact in each photoacoustic channel data frame using the pa-
rameters reported in Table 1. These simulations were performed in a two-dimensional simulation grid with
lateral and axial dimensions of 97 mm and 122 mm, respectively. Reflection artifacts were created using the
method previously presented by our group13,17 (i.e., waveforms originating from photoacoustic sources were axi-
ally downshifted by the euclidean distance between an actual source and the source representing the artifact).The
source and reflection artifact corresponding to each raw channel data frame were multiplied by object intensity
multipliers randomly sampled from Table 1 and added together. Gaussian noise was then added to the resulting
matrix using the addNoise function in the k-Wave toolbox16 to form a raw photoacoustic channel data frame. As
with previous implementations of phased array transducer-based point source localization systems,13,18,19 each
raw channel data frame was zero-padded to match the FOV of a scan converted photoacoustic image to form a
zero-padded channel data frame of dimensions 565 × 926 pixels. These zero-padded channel data frames were
annotated using the method presented by Gubbi et al.13 with class information (i.e., “source” or “artifact”) and
bounding boxes of dimensions 32×16 pixels centered on the positions of sources and artifacts to form annotated
images. The totality of annotated images were separated into training (80%) and validation (20%) datasets.

2.3 Training and Validation Procedures

The Faster R-CNN network forming our point source localization system was initialized with pre-trained
weights from the ImageNet dataset20 and fine-tuned for 20 epochs with a batch size of 4 and an initial learning
rate of 1 × 10−3 on two NVidia (Santa Clara, California) Titan X (Pascal) GPUs. This fine-tuning process
was performed using the training dataset described in Section 2.2 and the Detectron2 software package.10 The
network was trained to detect and classify each waveform in the input photoacoustic channel data frame as
a source or reflection artifact and position a bounding box around the peak of the detected waveform. The
fine-tuned network was then validated offline on the simulated validation dataset using the process described by
Gubbi et al.13

Table 1. Ranges and increment sizes of parameters used to generate simulated datasets

Parameters Min Max Increment

Speed of Sound [m/s] 1440 1640 6
Axial Position [mm] 20 100 0.2
Lateral Position [mm] -74.3 74.3 0.1
Channel SNR [dB] -5 2 random
Object Intensity (multiplier) 0.75 1.1 random
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(a) (b)

Figure 3. (a) Photograph of experimental setup and (b) schematic diagram of fiber tip tracking experiment, showing
direction of fiber movement with respect to ultrasound probe.

2.4 Fiber Tip Tracking Experiment

An experiment was conducted to estimate the tip-tracking error of the ROS2-based photoacoustic visual
servoing system, with the experimental setup shown in Fig. 3. At the beginning of the experiment, the optical
fiber was inserted into the plastisol phantom and the translation stage was set to 0 mm. The probe was placed
on the phantom with the lateral dimension of the probe approximately aligned with the length of the fiber (to
visualize as much of the intended trajectory of the optical fiber tip as possible). The probe was then centered
over the fiber tip. The translation stage advanced the fiber tip in the lateral dimension of the probe, in 2 mm
increments, with a total travel distance of 10 mm. The visual servoing system was employed to center the
probe over the fiber tip with each fiber tip displacement increment. Three trials were conducted for each lateral
displacement, resulting in 15 total trials. The tip tracking error e was calculated using the equation:

e =
∥∥∥B p̂f − B p̂i − B ŝn

∥∥∥ , (1)

where B p̂i and
B p̂f are the initial and final robot end effector positions, respectively, , and B ŝn is the measured

displacement of the fiber tip. The mean and standard deviation of the errors for each lateral displacement
were calculated. These results were compared to measurements obtained when this experiment was previously
performed with our ROS-based visual serving system.7

3. RESULTS

3.1 Validation with Simulated Dataset

Table 2 reports the detection performance (i.e., precision, recall, F1 scores, misclassification rates, and missed
detection rates) of the point source localization system when applied to the simulated dataset. The precision,
recall, and F1 scores indicate similarly high performance for both sources and artifacts. The system missed 3.36%
more artifacts than sources (i.e., 10.94% vs. 7.58%). In addition, the system was robust against misclassification
errors for both sources and artifacts. The system also achieved lateral, axial, and Euclidean localization errors
of 0.65± 0.74, 0.24± 0.22, and 0.72± 0.75, respectively, for detected sources.

3.2 Experimental Tracking Performance

Fig. 4 shows the mean and standard deviation of tip-tracking errors for the previous ROS1-based system
and the current ROS2-based system. The former system produced tracking errors ranging 0.59-1.03 mm with
a mean error of 0.82 mm across the lateral displacements tested, based on results acquired during a previously
conducted experiment.7 The updated system produced tracking errors ranging 0.35-0.98 mm with a mean error
of 0.65 mm across the lateral displacements.
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Table 2. Detection performance for sources and artifacts achieved by point source localization system on simulated
validation dataset

Performance Metric Sources Artifacts

Precision [%] 95.65 98.60
Recall [%] 92.22 88.06
F1 score [%] 93.91 93.04
Misclassifications [%] 0.20 0.06
Missed detections [%] 7.58 10.94

Figure 4. Mean needle tip tracking errors as functions of the lateral shift for the previous7 and updated visual servoing
systems. The black error bars represent the standard deviation of each set of measured errors.

4. DISCUSSION

The results presented herein evaluate the benefits of using ROS2 and Detectron2 to create a deep learning
photoacoustic visual servoing system. The main advantage seems to be lower tip tracking errors across a range
of displacements, when compared to the previous system.7 In particular, the reduced mean fiber tip tracking
errors with the ROS2-based system (i.e., 0.82 mm) can be compared to the tool tip tracking errors obtained with
the ROS-based system (i.e., 0.98 mm).7 The overall mean improvement with the ROS2-based visual servoing
system translates to a 23.53% reduction in fiber tip tracking errors in the phantom tissue.

Future possible improvements to the proposed deep learning visual servoing system include increasing the
number of degrees of freedom of the robot end effector motion and using 3D simulated data to train the neural
network (rather than 2D data). Regarding the degrees of freedom of the end effector, the nominal motion of the
robot end effector is limited to one dimension in our visual servoing system, and a second dimension is used to
search for and find the tool tip when it is not in the imaging plane of the probe. Although these two degrees of
freedom are sufficient to achieve visual servoing, future work will explore the extent to which additional degrees of
freedom are necessary to achieve more complicated path planning outcomes. Regarding the use of 3D simulated
data,given the greater similarity to experimental photoacoustic data, a 3D dataset is anticipated to both provide
more accurate position estimates and enable localization of out-of-plane tool tips.

5. CONCLUSION

This work is the first to integrate of ROS2, Detectron2, and 2D simulated photoacoustic channel data with
a deep learning-based photoacoustic-robotic visual servoing system. The ROS2-based system is more accurate
(e.g., 0.35-0.98 mm needle tracking errors) when compared to the former ROS-based system (which produced
tracking errors of 0.59-1.03 mm).7 This improvement enables more effective, real-time, tip tracking of needles,
catheters, and other surgical tools that are similarly essential to surgical and interventional procedures.
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