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Abstract—Shear strain measurements derived from ultrasound
imaging of tissue displacements have the potential to be a useful
biomarker of muscle health, myofascial stiffness, and associ-
ated pain. However, displacement tracking techniques that were
previously implemented to discern this potential are limited by
displacement estimation noise and lengthy runtimes. This work
investigates the ability of a deep learning-based displacement
tracking method applied to myofascial shear strain quantification
to resolve these two limitations. A pre-trained recurrent all-
pairs field transforms (RAFT) network was deployed on in
vivo shoulder muscle data acquired from two stroke patients.
Results were compared to a conventional window-based tracking
approach. RAFT reduced the estimation variance by factors of
354-667 relative to the conventional approach, which manifests as
smoother lateral displacement images. When each post-displaced
image was warped by the estimated displacement, RAFT reduced
the maximum residual between the pre- and post-displaced
images by 19-23%, when compared to the conventional approach.
In addition, RAFT completed displacement tracking of consec-
utive image pairs in 0.25 seconds, which is one of the greatest
advantages of RAFT for the proposed clinical application. Results
are promising to quantify myofascial stiffness and monitor muscle
health with real-time speed (e.g., 4 Hz).

Index Terms—Ultrasound, shear strain, displacement tracking,
deep learning, stroke, myofascial stiffness

I. INTRODUCTION

Shear strain properties have traditionally served as biomark-
ers of tissue pathologies (e.g., tumor malignancy, cardiovascu-
lar abnormality) [1]–[3]. Recent investigations have also sup-
ported a novel clinical hypothesis that the pectoralis muscles
on the post-stroke paretic side of a patient dysfunctionally
glide against fascial layers, causing increased myofascial pain
and stiffness relative to the non-paretic side [4]. These physi-
ological effects are further hypothesized to be responsible for
alterations in the lateral shear strain between the pectoralis
major and minor muscles on the paretic and non-paretic sides
after a stroke [5]–[7].

Fundamentally, ultrasonic shear strain estimation requires
tracking the displacement fields between images, then differ-
entiating the associated displacement component (e.g., axial,
lateral) with respect to an orthogonal spatial direction. There-
fore, displacement estimation is arguably the most critical
component of the shear strain quantification process, because
shear strain accuracy is directly related to the quality of
the estimated displacements. Window-based [8] and energy

function optimization-based [9]–[11] techniques are two of the
most traditional ultrasonic displacement estimation methods.
Previous work utilized window-based [6], [7], [12] tracking
to quantify myofascial shear strain. However, window-based
techniques are sensitive to speckle-tracking noise. In addition,
both window-based and energy-based techniques require an
exhaustive search process, which can limit real-time imple-
mentation and investigations.

Deep learning-based tracking is an emerging approach
that has the potential to overcome the noise and/or real-
time implementation limitations of window- and energy-based
algorithms [13]–[15]. In particular, deep learning models
can produce accurate, low-variance displacement fields with
inference rates of 11 Hz [14], which is suitable for real-
time implementation. While energy-based techniques can also
address the noise limitation of window-based techniques [5],
this approach remains limited by slow implementation speeds
(e.g., 0.2 Hz [11]). Therefore, deep learning-based tracking has
the potential to both reduce noise and increase implementation
speed with respect to quantifying myofascial shear strain in
stroke patients.

This paper investigates the feasibility of deep learning-based
ultrasound displacement tracking of myofascial shear strains.
In particular, a deep optical flow estimation network, named
recurrent all-pairs field transforms (RAFT) [16], is deployed
to track myofascial shear strain in patients with post-stroke
shoulder pain. We compare deep learning to standard window-
based tracking techniques, as the majority of existing myofas-
cial shear strain quantification research employs window-based
techniques [6], [7], [12].

II. METHODS
A. In Vivo Data Acquisition

A bimanual arm trainer (Mirrored Motion Works Inc.,
Raleigh, NC) was utilized to passively rotate the shoulders of
two research participants with stroke, each with one painful
paretic shoulder. The shoulders were periodically rotated in-
ternally (0-30◦ excursion) at a rate of 0.5 Hz. A robot-held
L15 ultrasound probe (Clarius Moblie Health, Vancouver,
BC) was placed to acquire 20 seconds of envelope-detected
ultrasound data from the pectoralis muscles of each participant
during the passive motion described above. The ultrasound



Fig. 1: RAFT architecture

transmit and sampling frequencies were 14 MHz and 15 MHz,
respectively. This research study was approved by the Johns
Hopkins Institutional Review Board, and patients provided
written consent to participate.

B. Displacement Tracking

RAFT [16] was implemented in PyTorch [17] to perform
the previously unseen task of tracking tissue displacements
between consecutive ultrasound frames, according to the net-
work architecture shown in Fig. 1. This architecture accepts
pre- and post-displaced image acquisitions (i.e., Frames 1
and 2, respectively) as inputs to two convolutional neural
networks with the same architecture, which calculates the inner
products between extracted features to construct a correlation
volume, then iteratively estimates displacement fields. A single
calculation of context features from Frame 1 is also provided
using the same network architecture as that of the feature
encoder. Initialized with zero displacement values, RAFT
updates the displacement estimates using a modified gated
recurrent unit [18] in each iteration. The input to the update
block is a combination of context features and correlation
and displacement features, respectively, extracted from the
correlation volume and the current displacement estimates.
This process was repeated for each ultrasound frame pair
(totaling 473 and 418 for Participants 1 and 2, respectively).

We tested a pre-trained RAFT model on our ultrasound
dataset. Pre-training was implemented with FlyingChairs [19]
+ FlyingThings3D [20] datasets, followed by fine-tuning on
the Sintel [21] dataset. The supervised loss function was
defined as:

Loss =

N∑
i=1

wN−i∥dg − di∥1 (1)

where N is the number of iterations, dg and di refer to the
ground truth and estimated displacement fields, respectively,
and w is a tunable weight, empirically set to 0.8. More details
are available in [16].

Each input frame pair illustrated in Fig. 1 was envelope-
detected ultrasound data, normalized to [-1 1], and resized to
520×960. The displacement estimates were then resized back

to the original size of the input frames with appropriate scaling
of the displacement values.

C. Quantitative Assessments

For each frame pair, the pixel-wise displacement difference
between Frames 1 and 2 (after warping Frame 2 by the esti-
mated displacement field) was calculated, which is referred to
as the residual. To assess displacement tracking accuracy, the
maximum absolute residual (MAR) was calculated, with lower
values indicating greater accuracy. To assess the variability of
the displacement estimates, the variance (σ) within a 5 mm ×
5 mm spatial window of each lateral displacement image was
calculated.

To connect displacement measurements to the clinical hy-
pothesis of myofascial shear strain and stiffness differences
between paretic and non-paretic shoulders, lateral displace-
ment estimates between consecutive frames were temporally
accumulated. The instantaneous shear strains were calculated
using the cumulative lateral displacement estimates:

Shear strain =
lc,minor − lc,major

D
× 100% (2)

where lc,major and lc,minor denote the average cumulative lateral
displacements within 5 mm × 5 mm rectangular regions of
interest (ROIs) placed on the pectoralis major and minor
muscles, respectively, and D is the axial distance between the
ROI centers. The calculated shear strains were then plotted as
a function of time, and the median of each plot was reported.

The above process was repeated with a cross-correlation-
based windowed-search technique [8] (hereafter referred to
as Search). The MAR, σ, and shear strain results obtained
with Search were compared to those produced with RAFT.
In addition, the execution times to perform Search and RAFT
were also compared.

III. RESULTS

Fig. 2 shows representative single-frame B-mode images
and corresponding lateral displacement images produced by
Search and RAFT. Both approaches successfully delineate
the primary motion directions of the pectoralis major and
minor muscles. However, Search produces characteristic dis-
placement estimation noise that is inconsistent with the con-
trolled passive shoulder motion (σ values of 0.052 and 0.24
mm2 for Participants 1 and 2, respectively). This noise was
reduced with RAFT, resulting in σ values of 7.86 × 10−6

and 3.63 × 10−5 mm2 for Participants 1 and 2, respectively.
Across the entire 473 (Participant 1) and 418 (Participant
2) frame pairs, Table I shows that RAFT reduced σ by
factors of 354-667 and also reduced the MAR by 19-23% per
participant, when compared to corresponding Search results.
These reductions are achieved despite discrepancies with the
shear plane contour in the example RAFT results (Fig. 2).

Figs. 3(a) and 3(b) present the progression of lateral shear
strain over time for Participants 1 and 2, respectively. RAFT
generally produces smoother shear strain profiles than Search.
In particular, whereas abrupt jumps exist with Search (which



Fig. 2: Representative B-mode and lateral displacement images from the non-paretic side of the two participants. The dashed
lines in the B-mode images indicate the myofascial shear plane.

Fig. 3: Quantitative shear strain as a function of time for Participants (a) 1 and (b) 2. (c) Median shear strains obtained from
the plots in (a) and (b).

are unexpected based on the controlled data acquisition proto-
col), RAFT provides nearly flat or more cyclical strain patterns
for each participant.

Fig. 3(c) shows the corresponding median shear strain
summary (i.e., median shear strain of each plot in Figs. 3(a)
and 3(b)). Based on these results, the paretic side of each
patient experiences lower lateral shear than the non-paretic
side. In particular, for Participants 1 and 2, the non-paretic to
paretic median shear strain ratios are 5 and 2, respectively,

TABLE I: Mean ± standard deviation of MAR and σ mea-
surements. Bold indicates best per metric per participant.

Participant MAR (mm) σ (mm2)
1 Search 0.74 ± 0.09 0.20± 0.13

RAFT 0.60± 0.10 0.00030± 0.0014
2 Search 0.80 ± 0.07 0.29± 0.15

RAFT 0.62± 0.10 0.00082± 0.0035

with Search and 3 and 4, respectively, with RAFT.
With an NVIDIA TITAN Xp GPU with 27.9 GB memory,

RAFT required approximately 0.25 s to estimate the displace-
ments between two consecutive 36.2 mm × 49.92 mm ultra-
sound images (1 minute to process the entire video acquisition
from the non-paretic side of Participant 1, which contains 240
frames total). In comparison, with a 6th generation Intel Core-
i5 CPU with 32 GB RAM, Search required approximately 29
seconds to estimate the displacement fields between the same
two frames noted above (116 minutes to process the entire
video acquisition containing 240 frames).

IV. DISCUSSION

This study is the first to demonstrate a deep-learning-
based displacement tracking approach to determine post-stroke
myofascial shear strain. RAFT is an otherwise established
optical flow approach for natural images and photographs that,
to the best of our knowledge, has never been implemented for
this new clinical task. The benefits of RAFT-based myofas-



cial shear strain estimation include qualitatively interpretable
displacement images and shear strain trajectories, quantitative
improvements over a more standard approach (Table I), and
real-time runtimes. In addition, the proposed deep learning
approach supports the clinical hypothesis that the paretic side
of a stroke patient yields lower shear strain than the non-
paretic side (Fig. 3(c)).

RAFT provided displacement estimates with a factor of
116 times lower runtime than Search. Whereas Search was
implemented on a CPU, RAFT was implemented on a GPU,
which can be considered as an unfair runtime comparison,
particularly if the runtime of Search can be improved with
a GPU-optimized algorithm. However, previous work [22] re-
ports a window-based displacement tracking algorithm runtime
of 3 s when implemented on a GPU to produce a 50 pixels ×
300 pixels displacement image. This speed is slower than the
0.25 s runtime achieved with our deep learning-based tracking
approach, which also produced a larger 520 pixels × 960
pixels displacement image. Therefore, it is unlikely that a
window-based tracking algorithm will outperform the speed
of a deep learning approach, even if both are implemented
and optimized on the same GPU.

One limitation of our study is the pre-training of RAFT
on synthetic computer vision datasets to perform ultrasound
motion tracking. However, it is nonetheless promising that
RAFT outperformed a standard window-based tracking ap-
proach (as reported in Table I). Future work will implement
unsupervised training on ultrasound videos containing pri-
marily lateral motion to assess the potential for additional
performance improvements.

V. CONCLUSION
We investigated the feasibility of a deep learning-based dis-

placement tracking model (i.e., RAFT) to quantify post-stroke
myofascial shear strain. RAFT completed this task in 0.25 s
per frame pair (i.e., 4 Hz inference speed), with reduced dis-
placement estimation variance and better accuracy relative to
a window-based displacement tracking technique. In addition,
RAFT generally provided smoother shear strain profiles, which
enables reliable qualitative assessment of myofascial stiffness.
From a clinical perspective, it is also highly promising that
the presented RAFT implementation supports the hypothesis
of lower lateral shear strain between the pectoralis major and
minor muscles on the paretic side of stroke patients, relative
to the non-paretic side, highlighting potential utility as an
ultrasound biomarker of post-stroke shoulder pain.
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