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Abstract—In ultrasound images, clutter is a noise artifact 
most easily observed in anechoic or hypoechoic regions. It ap-
pears as diffuse echoes overlying anatomical structures of diag-
nostic importance, obscuring tissue borders and reducing im-
age contrast. A novel clutter reduction method for abdominal 
images is proposed, wherein the abdominal wall is displaced 
during successive-frame image acquisitions. A region of clutter 
distal to the abdominal wall was observed to move with the 
abdominal wall, and finite impulse response (FIR) and blind 
source separation (BSS) motion filters were implemented to 
reduce this clutter. The proposed clutter reduction method 
was tested in simulated and phantom data and applied to fun-
damental and harmonic in vivo bladder and liver images from 
2 volunteers. Results show clutter reductions ranging from 0 
to 18 dB in FIR-filtered images and 9 to 27 dB in BSS-filtered 
images. The contrast-to-noise ratio was improved by 21 to 68% 
and 44 to 108% in FIR- and BSS-filtered images, respectively. 
Improvements in contrast ranged from 4 to 12 dB. The method 
shows promise for reducing clutter in other abdominal im-
ages.

I. Introduction

In diagnostic ultrasound, clutter is a noise artifact that 
appears as diffuse echoes overlying structures or sig-

nals of interest. It is most easily observed in anechoic or 
hypoechoic regions of images, such as in the gall bladder 
or urinary bladder. clutter obscures diagnostic measure-
ments and degrades image contrast [1].

Previous work identifies 2 primary mechanisms of clut-
ter generation: off-axis scatter and reverberation [2]–[4]. 
Harmonic imaging, in which higher harmonics generated 
by nonlinear sound propagation through tissue are imaged, 
has been shown to reduce clutter due to both mechanisms 
[5]–[9]. a wide range of apodization [10], [11] and adaptive 
beamforming [12]–[14] techniques are aimed at reducing 
clutter due to off-axis scatterers. In this paper, we present 
a technique for reducing clutter due to abdominal wall 
reverberations.

abdominal images can be modeled as containing 2 com-
ponents, the abdominal wall and an underlying organ of 
interest, each contributing to image clutter via one of the 
primary clutter generation mechanisms. clutter due to 
off-axis scattering is proposed to arise from axial and el-
evational structures in and surrounding the organ of inter-
est, while structures in the abdominal wall are proposed 
to cause clutter due to reverberation. random (thermal) 
noise is also a potential source of clutter, however, clutter 
appears stationary in most applications, indicating that 
this clutter contribution is minimal and can be ignored.

The proposed clutter reduction method is well suited 
for abdominal images, where tissue-to-clutter ratios can 
range from 0 to 35 db [1]. The method requires axial 
displacement of the abdominal wall during real-time im-
aging. Given the proposed model, clutter that arises from 
acoustic interaction (i.e., reverberation) in abdominal wall 
structures would experience similar displacements to the 
abdominal wall. This clutter is reduced by applying mo-
tion filters to the acquired images. The proposed method 
was tested in simulated, phantom, and in vivo images.

II. methods

A. Field II Simulations

Field II [15], [16] was used to simulate clutter moving 
in the same direction and with the same velocity as the 
transducer, in the presence of stationary tissue, a neces-
sary condition for the proposed clutter reduction method. 
When the motion is considered in a reference frame at-
tached to the transducer, clutter moving with the trans-
ducer appears stationary, and stationary tissue appears to 
be moving. Thus, motion was simulated by incrementally 
displacing one speckle pattern representative of homoge-
neous tissue relative to a stationary speckle pattern repre-
sentative of clutter.

The speckle patterns were created by insonifying a 
6 cm (axial) × 5 cm (lateral) × 1 cm (elevation) phantom, 
containing at least 10 scatterers per resolution volume. 
Half of the scatterers in the phantom were given random 
amplitudes at random locations, representative of homo-
geneous tissue. The other scatterers were given random 
amplitudes weighted by a factor of 10(1 − zp/6), where 
zp is the axial distance (cm) from the proximal phantom 
surface. (note: zp is defined for 0 < zp < 6 and zp = z − 3, 
where z is the axial distance (cm) from the transducer 
surface.) This weighting function resulted in random scat-
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terer amplitudes that linearly decreased with depth, simi-
lar to clutter noise in phantom and in vivo images [1]. 
The scatterers representing tissue were shifted 10 times 
in 0.1-mm increments toward the transducer to create 
motion relative to the simulated clutter. In addition to 
imaging tissue moving in the presence of stationary clut-
ter, the tissue and clutter were imaged separately (i.e., all 
phantom scatterers represented either stationary clutter 
or moving tissue), and the resulting images were placed 
side by side.

The transducer parameters used in the simulations 
are listed in Table I. The axial transmit focus was 6 cm. 
dynamic focusing was applied during receive beamform-
ing, and Hanning window apodization was applied to the 
transmit and receive apertures.

B. Phantom and In Vivo Studies

a siemens antares ultrasound scanner and siemens 
cH6–2 curvilinear transducer (siemens medical solutions 
Usa, Inc., Issaquah, Wa) were used to obtain phantom 
images and in vivo bladder and liver images from 2 male 
volunteers (ages 53 and 33). The scanner was operated 
in fundamental and harmonic imaging modes with trans-
mit frequencies of 4.4 mHz and 2.5 mHz, respectively. 
The axius direct Ultrasound research Interface (siemens 
medical solutions Usa, Inc., Issaquah, Wa) was used to 
acquire raw radio frequency (rF) data without signifi-
cant time-gain compensation and before the application 
of nonlinear processing steps. In harmonic imaging mode, 
the scanner implements the pulse inversion technique [17], 
[18], and harmonic rF data were obtained by summing 
the normal and inverted pulse-echo signals. To form b-
mode images, the rF data obtained in fundamental or 
harmonic imaging mode were envelope detected, normal-
ized to the brightest point, log-compressed, limited to a 
dynamic range of 45 db, and then scan-converted. The 
axial sampling frequency was 40 mHz. The line densities 
were 0.25, 0.28, and 0.30 degrees per line, respectively, in 
phantom and in vivo liver images, in vivo fundamental 
bladder images, and in vivo harmonic bladder images. The 
pulse repetition frequencies were 7.2, 4.0, and 5.3 kHz, re-
spectively. The frame rates were 25, 15, and 11 Hz, respec-
tively. all image processing and analysis was implemented 
with matlab (mathWorks Inc., natick, ma) software.

a custom bladder phantom was created by submerging 
a water-filled balloon in a slurry solution of graphite, pro-

panol, and water (rmI, now Gammex, Inc., middleton, 
WI, superspheres model Tm-c, discontinued by manu-
facturer). The ultrasonic transducer was placed in the 
slurry solution, with its imaging surface approximately 
2 cm above the submerged balloon. a linear translation 
stage (newport motion controller model mm3000, new-
port corporation, Irvine, ca) was used to translate the 
transducer axially at a controlled velocity of 0.5 mm/s 
during real-time imaging. The distance the transducer 
traveled between successive images was 0.02 mm. To gen-
erate clutter that moved with the transducer, a wiry cop-
per household scouring pad (scrubIT copper scourers, 
supply Plus, Inc. newark, nJ) cut to 1 cm in thickness 
was placed at the transducer surface, the transducer and 
wire mesh were confined in a transducer bag containing 
enough water to provide acoustic coupling, and the mo-
tion experiment was repeated. In a previous study [1], 
the copper wire mesh was shown to generate clutter with 
similar characteristics to that of in vivo data (i.e., simi-
lar in magnitude, clutter magnitude greatest in near field, 
magnitude decreases with depth). This clutter is likely a 
reverberation artifact due to the highly reflective metallic 
material.

as a corollary to the phantom study, the abdominal 
wall was translated during successive-frame in vivo im-
aging of the bladder and liver. abdominal wall motion 
was achieved by asking the volunteers to translate their 
abdominal muscles slowly while the hand-held transducer, 
resting and lightly supported on the abdominal skin, fol-
lowed the motion. We anticipate that this motion allows 
the transducer, abdominal wall, and underlying clutter to 
move approximately in unison, while distal tissues remain 
stationary.

displacement estimates for phantom and in vivo data 
were obtained by applying a normalized 2-d cross-corre-
lation search method (i.e., speckle tracking) to successive 
frames of envelope-detected rF data [19]. Thus, while dis-
placements are assumed to be axial along the probe axis, 
they were calculated along the beam axis. Given that a 
curvilinear probe was used for imaging, these 2 axes are 
similar for center beams (to the extent that the small 
angle approximation is valid) but not for outer beams.

The speckle-tracking kernel size was selected by mini-
mizing false peaks in the cross correlation function, while 
maintaining acceptable resolution in displacement results. 
The optimal kernel size in fundamental bladder images 
was 25 × 5 pixels, and this kernel size was kept constant 
for all data. In scan-converted images, the kernel sizes cor-
respond to 0.48 mm × 1.3° in phantom and in vivo liver 
data, 0.48 mm × 1.4° in the in vivo fundamental bladder 
images, and 0.48 mm × 1.5° in harmonic images. Kernels in 
one frame were compared with search regions of 100 × 10 
pixels in the consecutive frame. In scan-converted images, 
the search region sizes correspond to 1.9 mm × 2.5° in 
phantom and in vivo liver data, 1.9 mm × 2.8° in the in 
vivo fundamental bladder images, and 1.9 mm × 3.0° in 
harmonic images. The search regions were centered about 
the kernel location. The speckle-tracking algorithm was 
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TablE I. Transducer Parameters for Field II simulations. 

Parameter value

number of elements (total) 192
number of elements in subaperture 64
Element height 12 mm
Element width 0.314 mm
Kerf 0.014 mm
center frequency 2.5 mHz
sampling frequency 100 mHz
Fractional bandwidth 60%
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not applied to kernels near the edges of the b-mode im-
age where the search region extended beyond the image 
border.

C. Clutter Reduction with Motion Filters

motion filters were applied to simulated, phantom, 
and in vivo images to remove clutter moving in the same 
direction and with the same velocity as the transducer 
(i.e., clutter that appears stationary to the transducer). 
The first filter was a conventional 1,−1 FIr motion filter, 
also known as a stationary echo canceller, wherein the 
rF echoes in one frame were subtracted from those in a 
consecutive frame to reject stationary rF echoes [20]. The 
second filter was a bss filter, where basis functions were 
selected and/or rejected to reconstruct a filtered image 
[21]–[23].

bss filtering was implemented by performing robust 
principal component analysis with the robpca function in 
the matlab library for robust analysis [24], [25]. This 
function requires an input data matrix with observations 
in its rows and variables in its columns. The input data 
matrix consisted of envelope-detected rF echoes taken 
from the same lateral position (observations) in consecu-
tive images (variables). basis function selection was based 
on the time and depth projections associated with the 
principal components of the input data [22], [23].

as described by Gallippi et al. [22], [23], a time projec-
tion yields the motion profile associated with a particu-
lar principal component, while the corresponding depth 
projection indicates the relative strength of that principal 
component at each axial position. For example, a time 
projection with zero slope represents a basis function as-
sociated with a stationary signal component, while a time 
projection with nonzero slope represents a basis function 
associated with a moving signal component. a depth pro-
jection with uniform amplitude represents a basis func-
tion associated with a signal component that is equally 
weighted at all axial positions. a depth projection with 
dominant magnitudes at specific axial positions indicates 
that the associated basis function is dominant at those 
positions. The relative amplitudes in a depth projection 
also depend on relative amplitudes in the associated signal 
component.

although known to be true in simulated images and 
expected to be true in phantom images, axial motion was 
assumed to be uniform across the lateral dimension of in 
vivo images. Uniform motion implies similar basis func-
tions for all lateral positions, thus, the selected basis func-
tion generated by one lateral position was used to filter 
all axial lines in an image. To reconstruct a bss-filtered 
image, the data matrix of each axial line was projected 
onto the selected basis function, as described by

 y x vvi i
T= , (1)

where yi is the ith lateral position (or ith axial line) of 
the filtered image, xi is the data matrix of the ith lateral 

position in the original image, v is the eigenvector of the 
selected basis function, and vT is the eigenvector trans-
posed. The filtered rF lines were then normalized to the 
brightest point, log-compressed, and limited to a dynamic 
range of 45 db. scan conversion was the final step in fil-
tered phantom and in vivo images.

Filter efficacy was demonstrated with contour maps 
illustrating magnitude differences between filtered and 
reference images. The contour maps were formed from en-
velope-detected rF echo data. The reference and motion-
filtered data were low-pass filtered with a rectangular ker-
nel of 151 × 15 pixels (2.9 mm × 3.8°, 2.9 mm × 4.2°, and 
2.9 mm × 4.5° in scan-converted phantom and in vivo liver 
images, in vivo fundamental bladder images, and in vivo 
harmonic bladder images, respectively), and the pixel-wise 
ratio between resulting images was calculated.

The contrast in reference and filtered phantom and in 
vivo data was calculated using
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where So and Si are the mean envelope-detected rF data 
outside and inside a hypoechoic region, respectively. The 
contrast-to-noise ratio (cnr) in phantom and in vivo data 
was calculated using

 CNR
log 10

=
20 ( )

,
C

os
(3)

where σo is the standard deviation of the envelope-detect-
ed rF data outside the hypoechoic region [26], [27].

III. results

A. Field II Simulations

Fig. 1(a) shows the simulated images representing lin-
early decreasing clutter noise (left panel), homogeneous 
tissue in the presence of the clutter noise (middle panel), 
and tissue (right panel). a stationary echo canceller FIr 
filter was applied to the rF data in 2 consecutive frames, 
and the resulting image is shown in Fig. 1(b). The cor-
responding map of magnitude reductions in the filtered 
image is shown in Fig. 1(c). The left panel of this image 
shows the reduction of the clutter noise. although the 
contour map was limited to 33 db, the clutter in this re-
gion was reduced to zero, and the magnitude reduction in 
this region is infinity. In the second panel, the maximum 
reduction in the proximal region (3 to 3.5 cm) ranges from 
21 to 24 db. The distal region (8.5 to 9 cm) experiences 
0- to 3-db magnitude reduction. There are also regions 
with a 3- to 6-db signal increase. In the third panel, the 
average signal increase is 4 db. notice that the magnitude 
increase at the bottom of the second panel is similar to the 
increase in the third panel.

robust principal component analysis was applied to 
the central lateral position of Fig. 1(a) (0 cm in c+T 
image), and Fig. 2(a) shows the first 4 time and depth 
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Fig. 1. (a) simulated phantom images showing clutter noise (c), clutter noise mixed with homogeneous tissue (c+T), and homogeneous tissue (T); 
(b) finite impulse response (FIr)–filtered images; (c) corresponding maps of magnitude reductions in FIr-filtered images; (d) blind source separation 
(bss)–filtered images; and (e) corresponding maps of magnitude reductions in bss-filtered images. 

Fig. 2. blind source separation time and depth projections of the simulated data: (a) the first 4 time (top) and depth (bottom) projections for the 
central lateral position; (b) average of the first depth projection of all lateral positions; and (c) average of the first (top) and second (bottom) time 
projections of all lateral positions. Error bars indicate one standard deviation.
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projections, corresponding to the 4 most energetically sig-
nificant principal components. The first depth projection 
has a slope that decreases with depth, much like the slope 
of the weighting function applied to the simulated clut-
ter amplitudes. similar results were achieved for the first 
depth projection of all lateral positions, as shown in Fig. 
2(b). The first time projection has zero slope, indicating 
that this component of the signal is stationary (relative to 
the transducer). similar results were achieved for the first 
time projections of all lateral positions, as shown in the 
top panel of Fig. 2(c). The described characteristics of the 
first depth and time projections provide strong evidence 
that the first basis function is associated with the simu-
lated clutter.

The slope of the second time projection in Fig. 2(a) 
is constant and nonzero throughout, indicating that it is 
associated with uniform displacement, much like the in-
cremental displacement applied to the simulated tissue. 
similar results were achieved for the second time projec-
tions of all lateral positions, as shown in the bottom panel 
of Fig. 2(c). The described characteristics of the second 
time projection provide compelling evidence that the sec-
ond basis function is associated with the simulated tissue 
motion. Given the characteristics of the third and fourth 
time and depth projections, their basis functions are likely 
associated with a mixture of stationary noise and tissue 
motion.

The second basis function generated by the central lat-
eral position was determined to represent the most ener-
getic nonstationary principal component. It was selected 
to filter all axial lines and reconstruct the bss-filtered im-
ages shown in Fig. 1(d). a filter performance map of mag-
nitude reductions in the filtered images is shown in Fig. 
1(e). In the left panel of Fig. 1(e), the average reduction 
is 38 db. In the middle panel, the map shows a maximum 
clutter reduction of 33 db near the proximal phantom 
surface and a minimum reduction of 0 to 3 db near the 
distal surface. In the right panel, the average reduction is 
7 db. notice that the reductions at the top and bottom 
of the center panel are similar to the reductions of the left 
and right panels, respectively.

B. Phantom Experiments

Fig. 3(a) shows a b-mode image of the bladder phan-
tom. The map of peak correlation coefficients between 2 
successive frames acquired during transducer displacement 
is shown in Fig. 3(b). The frames were highly correlated in 
the regions surrounding the bladder, as well as inside the 
bladder, near the borders. There is less correlation inside 
the bladder, farther away from the borders, although the 
correlation coefficients are still high. Fig. 3(c) displays the 
corresponding axial displacement map, with displacement 
estimates shown relative to the transducer surface. In the 
reference frame of the transducer, the entire phantom is 
shown to have consistent motion toward the transducer.

Fig. 3(d) shows a b-mode image acquired when the 
clutter-generating wire mesh was placed between the 

transducer and the bladder, during simultaneous transla-
tion and successive-frame imaging. a map of the peak 
correlation coefficients between 2 successive frames is 
shown in Fig. 3(e). similar to Fig. 3(b), the correlation 
coefficients are highest in the regions surrounding the 
bladder. The coefficients are also high inside the bladder, 
in a region extending well below the proximal wall. This 
highly correlated region inside the bladder corresponds 
to the clutter generated by the wire mesh, as seen in the 
b-mode image of Fig. 3(d). In the corresponding axial 
displacement map of Fig. 3(f), the region containing the 
wire mesh and the clutter region extending below the wire 
mesh have similar displacement estimates, displacements 
that are approximately 0 mm relative to the transducer. 
The surrounding regions have consistent upward motion 
relative to the transducer, similar to the displacements 
observed in Fig. 3(c).

The regions with lower correlation coefficients (approxi-
mately 0.8) in Fig. 3(e) have discontinuous displacement 
estimates in the corresponding axial displacement map of 
Fig. 3(f) (e.g., the region surrounding axial position 1 cm, 
lateral position −3 cm). This type of displacement is not 
consistent with the transducer’s uniform motion toward the 
bladder. Therefore, regions showing such random motion 
are interpreted as regions of indeterminate displacements.

results of the FIr filter applied to 2 consecutive frames 
of the phantom image with the wire mesh are shown in 
Figs. 4(a) and (b). reductions of 6 to 18 db are seen in 
the clutter region inside the bladder cavity. reductions 
of 18 to 27 db are seen in the proximal regions occupied 
by the wire mesh (0 to 1 cm) and distal to the wire mesh 
(1 to 3 cm). The regions with reduced magnitudes were 
shown to have approximately zero displacement (relative 
to the transducer) in Fig. 3(f). The regions of interest 
(roIs) shown in Fig. 3(d) were used to calculate contrast 
and cnr in the reference and filtered phantom images. 
There is a 7-db contrast increase and 42% cnr increase 
in the FIr-filtered image (see Table II).
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TablE II. contrast and contrast-to-noise ratios (cnr) in 
reference and Filtered Images. 

contrast 
(db) cnr

bladder phantom images
 reference 23.2 0.50
 FIr-filtered 30.5 0.71
 bss-filtered 32.1 0.72
In vivo bladder images
 reference (fundamental) 12.1 0.26
 FIr-filtered 17.4 0.34
 bss-filtered 19.7 0.54
 reference (harmonic) 15.8 0.38
 FIr-filtered 19.5 0.46
 bss-filtered 22.0 0.59
In vivo gall bladder images
 reference 16.9 0.31
 FIr-filtered 29.4 0.52
 bss-filtered 26.0 0.52

FIr = finite impulse response; bss = blind source separation.
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Fig. 3. bladder phantom: (a) b-mode image; corresponding maps of (b) correlation coefficients and (c) axial displacements between 2 consecutive 
frames in the data set;  (d) b-mode image of bladder phantom with clutter-generating layer placed at the transducer surface (the boxes show regions 
of interest used to calculate contrast and contrast-to-noise ratios in reference and filtered data); and corresponding maps of (e) correlation coeffi-
cients and (f) axial displacements between 2 consecutive frames in the data set. displacements are relative to the transducer surface, where negative 
indicates motion toward the transducer and positive indicates motion away from the transducer.

Fig. 4. single frame results of the motion filters applied to the phantom data: (a) finite impulse response (FIr)–filtered image; (b) corresponding 
map of regional magnitude reductions in the FIr-filtered image, when compared with the reference image in Fig. 3(d); (c) blind source separation 
(bss)–filtered image; and (d) corresponding map of regional magnitude reductions in the bss-filtered image, when compared with the reference 
image in Fig. 3(d).
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The bss filter results shown in Figs. 4(c) and (d) are 
similar to the FIr filter results. The central lateral posi-
tion (0 cm) was used to generate basis functions for image 
reconstruction. depth projections with large amplitudes 
in the distal bladder wall region and time projections with 
decreasing slopes represented the principal components 
associated with motion (relative to the transducer). The 
first basis function had the steepest time projection slope 
(i.e., it represented the most energetic component associ-
ated with motion), and it was therefore selected to recon-
struct the filtered image. reductions of 3 to 18 db are seen 
in the clutter region inside the bladder cavity. reductions 
of 18 to 21 db are seen in the proximal regions occupied 
by the wire mesh (0 to 1 cm) and distal to the wire mesh 
(1 to 3 cm). similar to FIr-filtered images, the regions 
with reduced magnitudes in the bss-filtered images were 
shown to have approximately zero displacement (relative 
to the transducer) in Fig. 3(f). There is a 9-db contrast 
increase and 44% cnr increase in the bss-filtered image 
(see Table II).

The proximal bladder wall is not visualized in the fil-
tered b-mode images of Figs. 4(a) and (c), because the 
gain in this region of the original b-mode image was mini-
mized to achieve uniform image brightness; see Fig. 3(d). 
However, when the dynamic range (currently 45 db) was 
increased above 60 db in the filtered images, the proximal 
bladder wall was more apparent, but so was the clutter 
inside the bladder. The filter performance maps of Figs. 
4(b) and (d) reinforce this observation, because the region 
representing the proximal bladder wall has a reduction 
that is 3 to 6 db greater than the region representing the 
bladder interior.

C. In Vivo Experiment: Bladder Images

Fig. 5(a) shows a fundamental bladder image from 
volunteer 1, with a manually estimated outline of the 
bladder wall superimposed on the image. Fig. 5(d) shows 
displacement estimates between 2 consecutive bladder 
images acquired during axial displacement of the ab-
dominal wall. The displacement of the abdominal wall 
is approximately 0 mm relative to the transducer, con-
firming the anticipated outcome that the abdominal 
wall and the transducer moved approximately in unison. 
similar to the phantom experiment with the wire mesh, 
the displacement map shows that clutter in the proximal 
bladder cavity was also moving with the abdominal wall 
(displacement estimates of approximately 0 mm relative 
to the transducer). The lateral and distal bladder walls 
and adjacent tissue have displacements of approximately 
0.1 mm relative to the transducer. These results sup-
port the hypotheses about the applied motion that the 
transducer, abdominal wall, and underlying clutter move 
approximately in unison while distal tissues remain sta-
tionary.

Fig. 5(g) shows a harmonic bladder image from volun-
teer 1, with a manually estimated outline of the bladder 
wall superimposed on the image. a corresponding map 

of axial displacements between 2 consecutive harmonic 
images is shown in Fig. 5(j). although the 2-d displace-
ment maps in Figs. 5(d) and (j) show displacements be-
tween 2 consecutive frames, similar results were achieved 
in all consecutive frames of each data set, as shown in 
Fig. 6. similar results were achieved in fundamental and 
harmonic bladder images from volunteer 2 (images not 
shown).

It is important to note that the displacement results of 
Figs. 5 and 6 were obtained while the abdominal muscles 
were relaxed (i.e., the muscles were not tensed/tightened 
while being translated). With the abdominal muscles 
tightened during translation (results not shown), instead 
of having 0 mm displacement in the proximal bladder cav-
ity region, displacement estimates in this region were more 
spatially random, much like those at 6 to 9 cm in the 
hypoechoic bladder region of Fig. 5(d). additionally, the 
distal and lateral bladder wall regions contained displace-
ment estimates near 0.1 mm, and the proximal bladder 
wall was shown to have similar axial displacements to the 
lateral and distal bladder walls.

results of the FIr filter applied to 2 consecutive fun-
damental images from volunteer 1 are shown in Fig. 5(b) 
and (e). clutter reductions of 3 to 9 db are seen in the 
proximal bladder cavity (2 to 6 cm). results of the FIr
applied to 2 consecutive harmonic images are shown in 
Figs. 5(h) and (k), where clutter reductions of 0 to 12 db
are seen in the proximal bladder cavity (3 to 6 cm). The 
clutter regions with reduced magnitudes in FIr-filtered 
fundamental and harmonic images were shown to have ap-
proximately zero displacement in Fig. 5(d) and (j), respec-
tively. In corresponding filter performance maps, shown in 
Figs. 5(e) and (k), the abdominal wall experiences a mag-
nitude reduction ranging from 3 to 18 db (with negligible 
regions showing 21- to 24-db reduction), while the distal 
and lateral walls experience a signal increase of 3 to 6 db. 
The contrasts are improved by 5 db in the FIr-filtered 
fundamental image and 4 db in the FIr-filtered harmonic 
image, while the cnrs are improved by 31% and 21%, 
respectively (see Table II).

results of the bss filter applied to fundamental and 
harmonic images are shown in Fig. 5(c) and (i), respec-
tively. a central lateral position (0 cm and −0.7 cm, re-
spectively) was used to generate basis functions for image 
reconstruction. depth projections with large-amplitude 
near-field signals and time projections with slopes close 
to zero represented principal components associated with 
stationary clutter (relative to the transducer). depth pro-
jections with large amplitudes in the distal bladder wall 
region and time projections with decreasing slopes repre-
sented the principal components associated with motion 
(relative to the transducer). The second basis function 
had the steepest time projection slope and was selected 
for image reconstruction.

as shown in Figs. 5(f) and (l), respectively, clutter in 
the proximal bladder cavity was reduced by 18 to 24 db in 
the filtered fundamental image and 12 to 14 db in the fil-
tered harmonic image. The clutter regions that experienced 
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magnitude reductions were shown to be approximately 
stationary relative to the transducer, as demonstrated in 
Figs. 5(d) and (j). In the fundamental bss-filtered image, 
the abdominal wall experienced similar reductions to the 
proximal clutter region inside the bladder. In the harmon-
ic bss-filtered image, the abdominal wall was reduced by 
15 to 21 db. The tissue surrounding the lateral and distal 
bladder walls in fundamental and harmonic bss-filtered 
images experienced reductions of 6 to 15 db and 3 to 9 db, 

respectively, similar to the distal clutter region inside the 
bladder. The contrast improvements in the bss-filtered 
fundamental and harmonic images were 8 db and 6 db, 
respectively, while the cnrs were increased by 108% and 
45%, respectively (see Table II).

D. In Vivo Experiment: Liver Images

a fundamental b-mode image of the gall bladder and 
surrounding liver tissue of volunteer 1 is shown in Fig. 
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Fig. 5. (a) Fundamental and (g) harmonic b-mode bladder images from volunteer 1, with estimated bladder outlines superimposed. (The images were 
acquired at different times, hence the different appearances.) The boxes show regions of interest (roI) used to calculate contrast and contrast-to-
noise ratios in reference and filtered data. (b) Finite impulse response (FIr)– and (c) blind source separation (bss)–filtered fundamental images and 
corresponding maps of (d) axial displacements between 2 consecutive frames, (e) FIr filter performance, and (f) bss filter performance; (h) FIr- and 
(i) bss-filtered harmonic images and corresponding maps of (j) axial displacements, (k) FIr filter performance, and (l) bss filter performance. axial 
displacements are relative to the transducer surface, where negative indicates motion toward the transducer and positive indicates motion away from 
the transducer. axial displacement maps show roI in the abdominal wall, clutter distal to the abdominal wall, and the distal bladder wall. These 
roI were used to calculate average displacements in all consecutive frames of the data set (see Fig. 6).
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7(a). successive-frame liver images were acquired during 
axial translation of the abdominal wall. displacement es-
timates between 2 consecutive images are shown in Fig. 
7(b). The abdominal wall and a region distal to the ab-
dominal wall are shown to be stationary relative to the 
transducer, while the distal tissues are shown to move 
toward the transducer. The stationary region is similar to 
that of in vivo bladder images from the same volunteer. 
Furthermore, the stationary region is juxtaposed to the 
moving region in the liver image, whereas the 2 regions are 
separated by a region of random displacements in bladder 
images.

an FIr filter was applied to 2 consecutive frames in 
the data set. The filtered image is shown in Fig. 7(c), and 
the corresponding filter performance map is shown in Fig. 
7(d). regions that were shown to move with the trans-
ducer were reduced by 3 to 24 db in the filtered image. 
most of the distal tissues experienced a 0 to 3 db signal 
increase. There is a 12-db contrast increase and 68% cnr
increase in the FIr-filtered image (see Table II).

The bss-filtered image is shown in Fig. 7(e). The lat-
eral position of the brightest point inside the gall bladder 
image (−0.2 cm) was used to generate the basis functions 
for image reconstruction. The second basis function had 
the steepest time projection slope, and it was selected for 
image reconstruction. as shown in Fig. 7(f), the clutter in 
the gall bladder is reduced by 19 to 21 db. The region that 
was shown to move with the abdominal wall, as shown 
in Fig. 7(b), is reduced by 12 to 21 db (disregarding the 
small 3- to 9-db regions to the right of the image). There 
is a 9-db contrast increase and 68% cnr increase in the 
bss-filtered image (see Table II).

Iv. discussion

A. Implications for Clutter Reduction in 
Abdominal Images

clutter noise is apparent in the hypoechoic regions of 
the bladder and gall bladder (previous literature states that 

these regions should be hypoechoic or anechoic in the ab-
sence of clutter [28], [29]). such hypoechoic regions are not 
always present in abdominal images of diagnostic interest. 
The tissue may be completely echogenic throughout the 
field of view, allowing clutter noise to be less noticeable. 
The simulation results of Fig. 2 demonstrate that the FIr
and bss filters are able to reduce stationary clutter in the 
midst of moving tissue signals that are completely echo-
genic. These results imply that the proposed motion-based 
clutter reduction method can be implemented in several 
types of abdominal images, with or without hypoechoic re-
gions for easy visualization of clutter reductions.

The inclusion of the wire mesh in phantom images pro-
duced clutter distal to the mesh, which moved with the 
transducer during axial translation; see Fig. 3 (f). When 
the mesh was absent, the clutter seen in the anechoic re-
gion of the phantom image did not move with the trans-
ducer; see Fig. 3 (c). The clutter that moved with the 
transducer is suspected to arise from sound reverberation 
in the wire mesh. It was reduced, as shown in Fig. 4, via 
the proposed clutter reduction method.

similarly, in the hypoechoic regions of in vivo bladder 
and liver images, the displacement maps of Figs. 5 and 7 
show that there is a persistent region of clutter distal to 
the abdominal wall that moved at the same rate as the 
transducer and the displaced abdominal wall. This clutter 
is suspected to arise from acoustic interactions within the 
abdominal wall, such as sound reverberation. This clutter 
region was not as prevalent in displacement maps when 
the experiment was performed with tightened abdominal 
muscles, further supporting the hypothesis that a major 
source of this clutter is reverberation in abdominal tis-
sue. a region of similar shape and size appears in the 
hypoechoic region of bladder images from the same vol-
unteer—e.g., compare Figs. 5(d) and 7(b)—as well as in 
the anechoic region of the phantom image with the wire 
mesh; see Fig. 3 (f). This region of clutter is believed to 
overlay a large portion of the in vivo liver image (not just 
the hypoechoic region) and is most likely present in other 
abdominal images.

2445lediju et al.: a motion-based approach to abdominal clutter reduction

Fig. 6. average axial displacements of select regions in displacement maps of consecutive fundamental (a) and harmonic (b) images. The regions of 
interest used to calculate average displacements are shown in Figs. 5(d) and (j), respectively. displacements are relative to the transducer surface, 
where negative indicates motion toward the transducer and positive indicates motion away from the transducer.
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additional confirmation that clutter overlays abdomi-
nal images is found in the displacement data of in vivo 
images. although random displacements were primarily 
seen at the boundary separating stationary and moving 
signals in hypoechoic regions of bladder images, as seen 
in Figs. 5(d) and (j), such random displacements did not 
separate the 2 motions in the liver image; see Fig. 7 (b). 
Instead, the regions containing the 2 motions were juxta-
posed, and the boundary separating them occurred in the 
echogenic tissue region distal to the gall bladder. Thus, 
the echogenic regions distal to the gall bladder (as well 
as the echogenic regions surrounding the gall bladder) are 
either due to tissue (moving regions) or clutter overlying 
the tissue (stationary regions). This is most likely true for 
echogenic regions in other abdominal images. as demon-
strated with simulated and in vivo liver data, the proposed 

clutter reduction method is feasible in such echogenic en-
vironments.

B. Motion Filter Advantages and Limitations

The expected performance of the FIr and bss motion 
filters is confirmed by simulation results. When applied to 
the left panel of Fig. 1(a) (the panel containing only clut-
ter noise), the FIr filter successfully cancels stationary 
echoes, reducing the magnitude to zero, while the bss fil-
ter reduces clutter magnitude by 38 db. When applied to 
the right panel of Fig. 1(a) (the panel containing only tis-
sue), the filters have similar responses to the distal region 
(8.5 to 9 cm) of respective center panels, confirming the 
similarity of these regions and demonstrating repeatable 
filter performance. In the FIr-filtered image, the distal 
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Fig. 7. results of the motion-based clutter reduction method applied to an in vivo liver: (a) fundamental liver image from volunteer 1; the boxes show 
regions of interest used to calculate contrast and contrast-to-noise ratio in reference and filtered data; (b) map of axial displacements between 2 con-
secutive frames in the image sequence; (c) finite impulse response–filtered image and (d) corresponding map of regional magnitude reductions in the 
filtered image; and (e) blind source separation–filtered image and (f) corresponding map of regional magnitude reductions in the filtered image.
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region of the center panel experiences a magnitude reduc-
tion of 0 to 3 db, which is expected given that the clutter 
in this region has approximately zero amplitude. Further-
more, the proximal region (3 to 3.5 cm) of this FIr-fil-
tered image experiences a magnitude reduction ranging 
from 18 to 24 db, which is close to expected, given that 
the average magnitude of the clutter noise in this region 
is approximately 10 times (20 db) greater than the aver-
age magnitude of the simulated tissue. The bss-filtered 
image has greater reductions than the FIr-filtered image, 
as discussed in greater detail later in this section. The 
center panels of both FIr- and bss-filtered images have 
the greatest reductions in the near-field and decreasing 
reductions with depth.

similar to the center panel of filtered simulation im-
ages, the near-field regions in phantom and in vivo images 
experience the greatest clutter reduction. The near-field 
reduction is most dramatic in the filtered phantom im-
ages, as seen in Figs. 4(a) and (c), where both clutter and 
tissue signal are removed. reduction of the tissue signal 
in the phantom data indicates that the proposed bss and 
FIr filters reduce slowly moving tissue as well as station-
ary echoes (relative to the transducer). However, when 
applied to the in vivo data, the filters yield a more realistic 
representation of near-field structures.

considering that the primary goal of these filters is to 
reduce echoes that are stationary relative to the trans-
ducer, it is expected that the wire mesh (phantom im-
ages) and the abdominal wall (in vivo images) would be 
reduced in the filtered images, because these structures 
were moving with the transducer. although this goal is 
beneficial when considering clutter that moves with the 
wire mesh and abdominal wall, it results in the reduction 
of these structures. To circumvent this issue, one might 
consider cropping near-field structures out of the image 
before motion filtering, then adjoining the cropped por-
tion to the filtered image afterwards. nevertheless, when 
imaging structures at depth, near-field abdominal layers 
are often unimportant.

The simulated and in vivo FIr-filtered images show 
increased signal magnitudes in regions that are moving 
relative to the transducer. signal increases are not ob-
served in the phantom FIr-filtered images. The increase 
is likely due to the subtraction of rF lines with large axial 
shifts (shifts in simulated and in vivo data are an order 
of magnitude larger than shifts in phantom data). For 
example, if identical regions in the shifted rF lines have 
the same magnitude but opposite signs, subtraction would 
yield a signal that is twice the magnitude of the original 
signal. This situation may be encountered when rF lines 
are shifted by half the transmit pulse wavelength, λ, which 
occurs when there is a displacement of λ/4 relative to the 
transducer. axial displacements are comparable to λ/4 
in simulated and in vivo images and smaller than λ/4 in 
phantom images (λ/4 = 0.15 mm in simulation and har-
monic images, λ/4 = 0.088 mm in fundamental images). 
Thus, large (~λ/4) axial displacements are likely the rea-

son for the 3- to 6-db signal increases observed in FIr 
filter performance maps of simulated and in vivo data.

although the performance of FIr and bss filters is 
similar in phantom images, the reductions in simulated 
and in vivo bss-filtered images are greater than those in 
respective FIr-filtered images. The greater reductions in 
bss-filtered simulation and in vivo images are likely due 
to the fact that the second principal components were 
used to reconstruct simulated and in vivo data, while the 
first principal component was used to reconstruct the 
phantom image. because higher-order principal compo-
nents contain less of the original image energy [21], [23], 
it is expected that images reconstructed with the second 
principal component would contain less energy than imag-
es reconstructed with the first principal component. Thus, 
images reconstructed with higher order principle compo-
nents experience signal attenuation and are expected to 
contain decreased signal-to-noise ratios when significant 
levels of random (thermal) noise are present.

despite the greater reductions seen in bss filter per-
formance maps of simulated and in vivo images, the rela-
tive clutter reductions in bss filter performance maps are 
comparable to relative clutter reductions in corresponding 
FIr filter performance maps. This explains why some bss 
filter performance maps show greater reductions than cor-
responding FIr filter performance maps, yet the clutter 
seen in corresponding FIr- and bss-filtered b-mode im-
ages is similar; e.g., compare Fig. 5(b) with Fig. 5(c).

Previous studies have shown that harmonic imaging 
reduces clutter in bladder images by 15 ± 3 db (aver-
age of 5 volunteers) [1]. clutter reductions achieved with 
the bss filter applied to in vivo fundamental images is 
comparable to clutter reductions achieved with harmonic 
imaging, while the FIr filter yields less clutter reductions. 
The FIr and bss filters applied to harmonic images were 
shown to reduce clutter in the harmonic images, suggest-
ing that higher levels of clutter reduction may be achieved 
when this motion-based approach is applied to harmonic 
images. note that motion artifacts in the harmonic data 
are negligible, given the high pulse repetition frequency 
(5.3 kHz) compared with the smaller frame rate (11 Hz).

The contrast in filtered phantom and in vivo images 
was increased by 4 to 12 db. The cnr was improved by 
21 to 68% in FIr-filtered images and 44 to 108% in bss-
filtered images. Given the limited number of volunteers, 
performance assessment in a broad range of individuals is 
unavailable and beyond the scope of this paper. However, 
similar contrast and cnr improvements are likely if the 
proposed clutter reduction method were applied to other 
abdominal images.

real-time implementation of the proposed method is 
more feasible for the 1,−1 FIr filter because it only re-
quires a lag of one frame and a subtraction operation. on 
the other hand, the bss filter must be implemented over 
several frames, and appropriate basis functions must be 
identified before filter implementation. The speed of the 
processor and the size of data sets are also important fac-
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tors in determining the real-time feasibility of bss filter-
ing.

v. conclusion

The proposed clutter reduction method requires axial 
displacement of the abdominal wall during real-time im-
aging. The method assumes uniform displacement of the 
abdominal wall and associated clutter, both of which ap-
pear stationary to the imaging transducer. FIr and bss 
motion filters were applied to reduce the stationary clut-
ter. The method was tested in simulated, phantom, and 
in vivo images. The results demonstrate that the FIr and 
bss filters are able to isolate and reduce clutter noise in 
hypoechoic and echogenic regions moving relative to the 
transducer. clutter reductions ranged from 12 to 24 db 
and contrast improvements ranged from 4 to 12 db. The 
cnr was improved by 21 to 68% in FIr-filtered imag-
es and 44 to 108% in bss-filtered images. The successes 
achieved in simulated, phantom, and in vivo images are 
promising evidence of this method’s potential for reducing 
clutter in a vast array of abdominal images.
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