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2Department of Physics, FFCLRP, University of São Paulo, Brazil
3Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD

4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
5Department of Computer Science, Johns Hopkins University, Baltimore, MD

Abstract—Short-lag spatial coherence (SLSC) beamforming of
photoacoustic signals reduces acoustic clutter and enhances the
contrast of underlying signals of interest. However, the original
SLSC imaging algorithm is also known to be computationally ex-
pensive to implement. CohereNet, a custom deep neural network
(DNN), was previously introduced to address the computational
complexity of SLSC beamforming when applied to ultrasound
data. Although it is conceivable that CohereNet can be translated
to photoacoustic data, this translation is challenged by differences
in data patterns and imaging depths when compared to ultra-
sound data, and it requires a similar diversity of photoacoustic
training data to that present in ultrasound training data. There-
fore, we propose to translate CohereNet to photoacoustic imaging
after taking advantage of the diversity of signal-to-noise ratios
(SNRs) available with transcutaneous in vivo data containing
various levels of acoustic clutter. Raw channel data were acquired
from the distal forearm of 18 volunteers with a variety of
skin constitutive pigmentation, with 12 volunteers designated for
training, 3 for validation, and the remaining 3 for testing. Time-
delayed kernels and corresponding spatial coherence functions
were computed and utilized as DNN training inputs and outputs,
respectively. The correlation between standard central processing
unit (CPU) SLSC and DNN SLSC images in the test set were 0.76,
0.78, and 0.84 when acquired with 750 nm, 810 nm, and 870 nm
wavelengths, respectively. In addition, a mean SNR improvement
of 2.5 dB was achieved with DNN SLSC imaging (relative to CPU
SLSC imaging), due to the smoother coherence functions created
with CohereNet. Results highlight the versatility of CohereNet,
particularly when translating from ultrasound to photoacoustic
data after appropriate steps are taken to achieve success, with
no evidence of overfitting to training data.

I. INTRODUCTION

Photoacoustic imaging is an emerging non-invasive modal-
ity that offers precise visualization of vascular structures, oxy-
gen saturation levels, and pathologies due to its sensitivity to
the optical properties of tissues [1], [2]. Among photoacoustic
beamforming techniques, short-lag spatial coherence (SLSC)
beamforming, has pronounced proficiency to enhance image
contrast and reduce acoustic clutter [3]–[6]. Most recently,
SLSC has also been demonstrated to reduce skin tone bias
in photoacoustic images [7].

CohereNet [8], a custom fully connected deep neural net-
work (DNN), was recently introduced as a method to directly
compute a coherence function from time-delayed channel data.
This approach enables faster and more efficient image recon-
struction with greater fidelity to the standard central processing

unit (CPU) algorithm when compared to the shortcuts required
to implement the graphical processing unit (GPU)-based SLSC
approach [9]. While previous training approaches were fo-
cused on ultrasound data [8], [10], the prospect of applying
CohereNet to photoacoustic SLSC beamforming using transfer
learning is promising.

However, the translation of CohereNet from ultrasound to
photoacoustic SLSC beamforming encounters three specific
challenges. First, different data patterns arise due to the in-
herent characteristics of the different imaging processes (e.g.,
reflectivity of abundant subresolution and subcellular scatter-
ing structures from tissue in ultrasound imaging vs. optical
absorption and conversion to acoustic energy of more isolated
photoacoustic targets). Second, non-invasive photoacoustic im-
ages are constrained by limited optical penetration depths [11],
thereby operating at more superficial depths when compared
to the deeper probing capabilities of ultrasound. Third, to
achieve success with ultrasound data, CohereNet was trained
with highly heterogenous in vivo breast data [8], which offers
multiple examples of expectations for coherence functions in
a single transmit-receive data acquisition sequence.

We propose to translate CohereNet to photoacoustic data by
training with photoacoustic data that contains a diversity of
signal-to-noise ratios (SNRs) and clutter levels when imaging
through the skin. This new training dataset is anticipated to
overcome challenges with differences in data patterns and
imaging depths when compared to a network exclusively
trained with ultrasound data. In addition, the desired pho-
toacoustic data diversity is possible by utilizing a previously
acquired dataset containing various skin tones [7].

II. METHODS

A photoacoustic imaging system comprising an Nd:YAG
laser (Brilliant B, Quantel Laser) connected to an OPO
(MagicPRISM, Opotek) and a commercial ultrasound ma-
chine (SonixOP, Ultrasonix) with a parallel acquisition module
(SonixDAQ, Ultrasonix) was utilized in this study. The laser
was coupled with a trifurcated optical fiber bundle (77536,
Newport), and the ultrasound system was attached to a linear
array transducer with 128 receiving elements (L14-5/38, Ul-
trasonix) to acquire photoacoustic channel data from the distal
forearm of 18 volunteers with different skin pigmentation.
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For each volunteer, 2-4 frames of photoacoustic channel
data were acquired with optical wavelengths of 750 nm, 810
nm, and 870 nm. These data were initially acquired and
utilized for a previous study [7], wherein skin tones were
quantitatively classified using the Individual Typology Angle
(ITA°) measured using a colorimeter (Delta Vista 450G).
Lower ITA° values indicate higher melanin concentration,
which results in increased acoustic clutter [7], [12].

SLSC beamforming [13] calculates the normalized cross-
correlation function between the time-delayed signals received
by different elements of an array as a function of spatial lag,
defined and implemented as follows on a CPU:

R̂(m) =
1

N −m

N−m∑
i=1

∑
k sk,i(n)sk,i+m(n)√∑

k s
2
k,i(n)

∑
k s

2
k,i+m(n)

(1)

where m is the lag in the number of elements, N is the
number of transducer receiving elements, and sk,i(n) is a time-
delayed, zero-mean kernel consisting of k axial samples, each
received at element i and centered at depth n. The resulting
spatial coherence function is summed up to a specific short-lag
value, M , as follows:

Rsl =

∫ M

1

R̂(m)dm ≈
M∑

m=1

R̂(m), (2)

yielding the value of the SLSC pixel. This process is repeated
for each lateral and axial position in the image. Therefore, one
axial kernel of photoacoustic channel data sk,i(n) consists of k
axial samples, each measured across the entire receive aperture
and centered at depth n.

To implement the DNN approach to SLSC image formation,
photoacoustic channel data were formatted to consist of 7 axial
samples to form the input sk,i(n), which yielded an output of
R̂(m) for each element i and depth n. Although CohereNet
was designed to accept 64 elements [8], the photoacoustic
channel data in this study were acquired with 128 elements.
Therefore, the input sk,i(n) was resized using the imresize
MATLAB function (MathWorks Inc, Natick, MA) with a
bicubic kernel to obtain 7×64 inputs from the original 7×128
matrix. Opting for the imresize function over straightforward
downsampling was driven by the necessity to respect the
continuous and intricately connected characteristics of the
photoacoustic pressure wave. Bicubic interpolation considers
values from several neighboring channels, safeguarding the
original coherence of the waveform and the subtle character-
istics embedded within. In addition, given that the network
architecture inherently expects an output shape of 1x64, we
chose to use only the initial 64 out of the possible 127
lags, R̂(m), from our 128-element data. This approach aligns
the photoacoustic data with the architecture and structure of
CohereNet, thus streamlining the transfer learning process
without major model modifications.

CohereNet was trained using empirically optimized hyper-
parameters, including a batch size of 256, a Nadam optimizer,
20 epochs, and a learning rate of 0.00005. This training was
implemented using Keras [14] with a Tensorflow backend [15].

TABLE I
NUMBER OF UNIQUE VOLUNTEERS IN THE TRAINING, VALIDATION,

AND TESTING DATA SETS PER SKIN TONE CATEGORY

Skin tone category Number of unique volunteers

Training set Validation set Test set

Light 1 1 -
Intermediate 3 - 1
Tan 3 1 1
Brown 3 1 -
Dark 2 - 1

A total of 3.3, 0.6, and 0.8 million samples were included in
the training, validation, and test sets, respectively. Each set
included at least three different skin tone classifications, with
additional details regarding the number of unique volunteers
for each skin tone reported in Table I.

Quantitative comparisons between CPU and DNN SLSC
images were performed using image-to-image correlation co-
efficients and the SNR of identified blood vessels. SNR is
defined as follows:

SNR =
Si

σo
, (3)

where Si and σ0 represent the mean and standard deviation,
respectively, of a ROI within and outside of the vessel,
respectively. The ROIs used to obtain Si and σ0 were located
at the same depth for each vessel. These values were calcu-
lated before applying log-compression. In addition, a novel
overfitting detection method introduced by Zhang et al. [16]
was employed. This technique uses three types of artificial
channel data (two binary images and an image of Gaussian
random noise) to quickly discern overfitting in DNNs.

III. RESULTS AND DISCUSSION

Fig. 1 shows representative examples of normalized spatial
coherence functions obtained from a vessel location. The DNN
output achieves a smoother profile when compared to the CPU
result. This smoothing ability was similarly observed when
CohereNet was trained and tested with ultrasound data [8].

Fig. 1. Normalized coherence function example at one SLSC pixel location
within a blood vessel.
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Fig. 2. Test set CPU and DNN SLSC images acquired with an optical
wavelength of 870 nm. Vessels are highlighted by white the boxes, which
denote regions of interest when calculating SNR.

Fig. 2 shows example SLSC images created without and
with CohereNet (i.e., CPU SLSC and DNN SLSC images,
respectively) when inputting the raw channel data from three
volunteers with skin tones previously classified as intermedi-
ate, tan, and dark [7], [17], [18]. Vessels highlighted by white
boxes denote regions of interest for SNR calculations. The
smoother coherence function outputs achieved with CohereNet
leads to a qualitative reduction of acoustic clutter in the
image background, when compared to corresponding CPU
SLSC images. The test set produced mean image-to-image
correlation values of 0.76, 0.78, and 0.84 when data were

Fig. 3. Mean ± one standard deviation of SNR measurements as a function
of wavelength, calculated for the three volunteers in the test set.

Fig. 4. Mean SNR calculated for the 18 volunteers compared to ITA° values
(•: training set, ▲: validation set, ⋆: test set).

acquired with 750 nm, 810 nm, and 870 nm wavelengths,
respectively.

Fig. 3 shows the mean ± one standard deviation of SNR
measurements as a function of wavelength for the CPU SLSC
and DNN SLSC results. These values were computed based
on the data obtained from the volunteers included in the test
set. An average SNR improvement of 2.5 dB across the three
wavelengths was achieved with DNN SLSC imaging relative
to CPU SLSC imaging. This enhancement is attributed to the
reduced standard deviation in the background, stemming from
the smoother DNN coherence function outputs.

Fig. 4 shows a comparison of mean SNR and ITA° value
per volunteer for the two SLSC imaging approaches. SNR
generally improved with DNN SLSC imaging relative to CPU
SLSC imaging for each volunteer, which is attributed to the
smoother coherence functions with the DNN approach. In
addition, SNR generally increased with an increase in ITA°
values (i.e., with lighter skin tones), which is expected because
lighter skin tones generally generate less acoustic clutter than
darker skin tones with both CPU and DNN SLSC imaging.

Fig. 5 shows normalized CPU and DNN SLSC images
derived from artificial Gaussian noise, zeros, and ones pho-
toacoustic channel data inputs, as defined by Zhang et al.
[16]. A similar Gaussian noise pattern is displayed in both the
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Fig. 5. Normalized CPU SLSC and DNN SLSC images produced with
artificial photoacoustic channel data inputs.

CPU and GPU SLSC images which indicates that the DNN
has retained the fundamental characteristics of the imaging
process. In addition, no vessels are observed in the binary
cases, which this is important because the appearance of
vessels in these synthetic cases would indicate that the DNN
is imposing learned features from the training dataset onto
an unrelated input, which is one key hallmark of overfitting
in ultrasound beamforming [16], [19]. These observations
suggest that our trained DNN did not overfit to the training
dataset.

IV. CONCLUSION

This work is the first to successfully translate CohereNet
from ultrasound to photoacoustic data, enabled by the vari-
ability introduced with different SNR, clutter, and skin tones
included in the photoacoustic training dataset. Notably, the
DNN SLSC method reduced acoustic clutter in the back-
ground, thereby improving SNR at target vessels. In addition,
transfer learning was achieved without evidence of overfitting.
With previous applications to a variety of ultrasound data and
with this new application to photoacoustic data, the results
herein highlight the versatility CohereNet.
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