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Abstract—Deep learning has been implemented to detect
COVID-19 features in lung ultrasound B-mode images. However,
previous work primarily relied on in vivo images as the training
data, which suffers from limited access to required manual
labeling of thousands of training image examples. To avoid
this manual labeling, which is tedious and time consuming, we
propose the detection of in vivo COVID-19 features (i.e., A-line,
B-line, consolidation) with deep neural networks (DNNs) trained
on simulated B-mode images. The simulation-trained DNNs were
tested on in vivo B-mode images from healthy subjects and
COVID-19 patients. With data augmentation included during
the training process, Dice similarity coefficients (DSCs) between
ground truth and DNN predictions were maximized, producing
mean ± standard deviatio values as high as 0.48 ± 0.29, 0.45
± 0.25, and 0.46 ± 0.35 when segmenting in vivo A-line, B-
line, and consolidation features, respectively. Results demonstrate
that simulation-trained DNNs are a promising alternative to
training with real patient data when segmenting in vivo COVID-
19 features.

Index Terms—deep learning, ultrasound imaging, COVID-19,
segmentation

I. INTRODUCTION

Multiple groups have introduced the potential of deep learn-
ing to aid COVID-19 diagnosis based on real-time lung ultra-
sound imaging [1]–[4]. Possible detectable features include
A-lines [5], B-lines [6], and subpleural consolidations [7]. A-
lines are commonly present in healthy lungs, appearing as
horizontal reverberation artifacts of pleura caused by multiple
reflections originating from the normal lung surface [5]. B-
lines are characteristic of diseased lungs, appearing as laser-
like vertical lines extending from the pleural line to the
edge of the screen, obliterating A-lines in some cases [8].
Subpleural consolidations are similarly present in diseased
lungs, appearing as echo-poor regions or tissue-like echo
texture that extends to the pleural line and may have irregular
margins [9].

While the first deep learning models implemented to de-
tect COVID-19 features in lung ultrasound B-mode images
primarily relied on in vivo labeled B-mode images as the
training data [1], these datasets are difficult to obtain, and
manually annotating in vivo data can be time consuming. In
contrast to in vivo data, simulated data can be easily generated

with known ground truths. Previous work demonstrated that a
training set containing a mixture of simulated and in vivo B-
mode images enabled deep neural networks (DNNs) to achieve
better performance when segmenting in vivo bone surface
features [10] and vessels [11]. In addition, when trained only
on simulated raw ultrasound channel data, DNNs can detect
cyst-like features in both phantom and in vivo B-mode images
[12], [13].

Our group is the first to implement simulation-trained DNNs
to identify in vivo B-line features in lung ultrasound images
from COVID-19 patients [14]. The simulation-trained network
found 39% more B-line features than a human observer, which
is promising for training less experienced users and triaging
the most problematic cases in an emergency setting. Despite
this promise, the quantitative Dice similarity coefficient (DSC)
scores measuring the overlap between network outputs and
ground truths were low (i.e., ≤0.24, with a value of 1 indicat-
ing complete overlap). In addition, only B-line detection was
previously investigated with our simulation-trained approach.
We hypothesize that data augmentation will improve network
performance when detecting B-lines. We also hypothesize
that our simulation-trained approach is not limited to B-line
detection.

This paper extends our simulation-trained approach to detect
A-lines, B-lines, and subpleural consolidations after imple-
menting data augmentation during the training process. We
trained networks to identify these three features in simulated
B-mode images. Network performance was then tested with
B-mode lung ultrasound images from healthy individuals (to
detect A-lines) and from COVID-19 patients (to detect B-lines
and subpleural consolidations).

II. METHODS

A total of 30,000 lung phantoms were simulated with
MATLAB based on publicly available in vivo lung ultrasound
B-mode images with A-line, B-line, and consolidation fea-
tures (10,000 phantoms per feature). The positions and the
echogeneity of the features were changed to increase the data
variability. Next, we simulated raw channel data with the
MATLAB Ultrasound Toolbox [15] using these phantoms. The
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Fig. 1. In vivo (adapted from [16]) and simulated examples of (a) A-line, (b)
B-line, and (c) consolidation features.

simulated transducer was a convex probe with 192 elements,
a field of view of 73◦, and a central frequency of 4 MHz.
The imaging depth was 10 cm, and the sampling frequency
was 60 MHz. The simulated raw channel data were then
processed with delay-and-sum beamforming, demodulation,
envelope detection, and scan conversion to generate B-mode
images with a dynamic range of 60 dB (i.e., a common
dynamic range when displaying ultrasound images).

To demonstrate the similarity between simulated and real
features, Fig. 1 shows real in vivo images (left) available in
[16], alongside examples of simulated B-mode images (right).
Simulated B-mode images were utilized to train and test DNNs
based on the U-Net [17] architecture and a modified version
of a previously reported deep learning architecture [12]. Each
DNN was trained using the Adam optimizer [18] to detect
one of the three features with an 80-20 training-testing split,
80 epochs, and a mini-batch size of 16. The training loss was
the DSC loss, which is defined as:

DSCLoss(θ) =
1

n

n∑
i=1

(
1− 2

|Sp,i(Id; θ) ∩ St,i|
|Sp,i(Id; θ) + St,i|

)
(1)

where Sp,i and St,i are the vectorized segmentation masks
for each training example, and n is the total number of
training examples in each mini-batch (i.e., the mini-batch
size). The performance of each DNN was measured using the
DSC score on a hold-out test set. Applied data augmentations
included horizontal flipping with a 0.5 probability, cropping
and resizing with a predefined region, contrast adjustment, and
Gaussian blur with a kernal size ranging from 3 to 25 and with
a 0.8 probability.

The simulation-trained network was then tested
on B-mode images from healthy and COVID-19
patients included in a public dataset (available at:
https://github.com/BorgwardtLab/covid19 ultrasound) [19].

Fig. 2. Ground truth and predicted segmentations overlaid on lung ultrasound
B-mode images from healthy and COVID-19 patients, containing (a) A-line
(healthy), (b) B-line (COVID-19), and (c) consolidation (COVID-19) features.

This public dataset is the largest publicly-available lung
ultrasound dataset (202 videos + 59 images), comprising
samples of COVID-19 patients, patients with bacterial
pneumonia, (non-COVID-19) viral pneumonia, and healthy
controls. For our in vivo test dataset, we included B-mode
images acquired with convex probes from COVID-19 patients
with B-line and subpleural consolidation features, and from
healthy controls with A-line features. In total, the in vivo test
dataset includes 32, 107, 27 images with A-line, B-line, and
consolidation features, respectively.

III. RESULTS

Fig. 2 shows example ground truth and predicted segmenta-
tions from in vivo B-mode images of each feature at training
epochs where the highest averaged test DSCs were obtained.
These images demonstrate that the predicted segmentation
qualitatively achieves good agreement with the ground truth.

Fig. 3 shows the mean ± standard deviation DSC as a
function of training epoch achieved with the in vivo test data
when segmenting A-line, B-line, and consolidation features.
In each case, the highest mean DSC was generally improved
by employing data augmentation. Without data augmentation,
the highest mean ± standard deviation DSCs were 0.40 ± 0.29
(epoch 1), 0.17 ± 0.15 (epoch 2), and 0.33 ± 0.35 (epoch
1) for A-line, B-line, and consolidation features, respectively.
Employing data augmentation increased the highest mean ±
standard deviation DSCs to 0.48 ± 0.29 (epoch 1), 0.45 ± 0.25
(epoch 20), and 0.46 ± 0.35 (epoch 75), representing 20%,
165%, and 39% improvement, respectively when detecting in
vivo A-line, B-line, and consolidation features, respectively.
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Fig. 3. Mean test DSC per training epoch ± one standard deviation shown as shaded error bars when segmenting in vivo (a) A-line, (b) B-line, and (c)
consolidation features

IV. DISCUSSION AND CONCLUSION

This paper is the first to investigate the performance of
DNNs trained with simulations and data augmentation to
segment A-line, B-line, and consolidation features from in
vivo lung ultrasound B-mode images from healthy individuals
and COVID-19 patients. When compared with previously
implemented simulation-trained DNNs [14], employing data
augmentation improved DSC scores by 20% to 165%. In
addition, the proposed simulation-trained approach is not
only limited to LUS B-line detection, but also generalizes
well to other LUS features including A-line and subpleural
consolidation. Future work will investigate network designs
that output multifeature segmentations.
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