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Abstract—We developed a novel method to detect overfitting
of deep neural networks trained to create ultrasound images.
This method only requires the network architecture and trained
weights, and does not require loss function monitoring during
an otherwise time-consuming training process. Specifically, two
binary images and an image of Gaussian random noise were used
as inputs to three neural networks submitted to the Challenge
on Ultrasound Beamforming with Deep Learning (CUBDL).
Comparing the network-created images to the ground truth
immediately revealed an overfit to the data used to train one
of the three networks, indicating the promise of our method to
detect overfitting without requiring lengthy network retraining
or the collection of additional test data. This approach holds
promise for regulatory oversight of DNNs intended to be deployed
on patient data.

Index Terms—deep learning, imaging, beamforming, overfit

I. INTRODUCTION

Deep neural networks (DNNs) have recently emerged as
a promising approach to high-quality ultrasound image for-
mation. Conventional ultrasound beamforming methods, such
as the delay-and-sum (DAS) algorithm, are typically hand-
tailored with array geometry and medium properties [1]. Im-
proved image quality can be achieved by employing the DAS
beamformer with multiple plane-wave transmissions instead of
a single plane-wave transmission. Compared to the traditional
DAS algorithms, ultrasound beamforming with deep learning
is advantageous because networks can be trained to directly
output high-quality ultrasound images from raw ultrasound
channel data [2]. Despite this advantage, one potential problem
is overfitting, in which networks perform well on training data,
yet fail to generalize across different unseen datasets.

Common methods such as early stopping, k-fold cross-
validation, or inference are widely adopted as effective ap-
proaches to prevent or detect overfitting [3], [4]. In early
stopping, training and validation errors are monitored, and
validation errors are measured to represent generalization
errors (i.e., the errors associated with predicting outcome
values for previously unseen data). In addition, early stopping
criteria are implemented to decide when to stop a training
process and achieve minimum generalization loss. Common
criteria include validation losses, quotient of validation losses,
or progress exceeding a particular threshold [5].

In k-fold cross-validation [6], a dataset is split into k groups
and enumerates the fitting and evaluation process based on k-1
training sets and 1 test set, k times. The final model skill score
shows the generalization of the network quantitatively.

With an inference approach to detect overfitting, additional
test data are input to further evaluate DNN performance
[7], [8]. This additional ultrasound RF channel data can be
obtained through experiments or simulations or from publicly
available datasets, such as CUBDL [9]–[11] or PICMUS [12]
datasets.

Major limitations of the early stopping, cross-validation,
and inference methods are that they require training data, re-
training of the network, or the curation of new test data. How-
ever, when presented with a new DNN without access to train-
ing code, training data, and unseen test data, implementation of
these methods are not possible. In addition, considering that
the training process typically requires thousands of training
examples, it is not always feasible for a user to train a new
DNN to perform the same task as that learned with an existing
DNN. Ideally, training code and data would not be required
to build confidence that an existing publicly available DNN
will perform well on new data related to the trained task.
This consideration is additionally important with respect to
regulatory procedures and trustworthiness of DNNs deployed
on patient data.

In this paper, we propose a new method to more rapidly
identify the overfitting of DNNs trained to output ultra-
sound images when compared to conventional approaches. Our
method does not require any training code, training data, or
test examples. Thus, it is effective when given a DNN and
its input data structure. In this case, the user can employ our
method to determine if the network is overfitting well before
testing on previously unseen ultrasound data.

II. METHODS

A. Artificial RF channel data

Robust networks generalize across different datasets while
overfitted models perform well only on training data [13].
To test networks on unseen data, we created three types of
artificial RF channel data, grouped into two categories: (1)
binary samples including zeros and ones and (2) random
samples. The proposed artificial channel data were inputs to
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a Pytorch DAS plane-wave beamforming algorithm [10], [11]
and to three DNN models submitted by Rothlübbers et al. [14],
Goudarzi et al. [15], and Wang et al. [16], respectively, to the
Challenge on Ultrasound Beamforming with Deep Learning
(CUBDL) [10], [11]. For brevity, these three DNNs will
be referred to as Network A, Network B, and Network C,
respectively. The output single 0◦ plane wave images from
the PyTorch DAS beamformer served as ground truths.

With zeros as the input, the output envelope image contained
zeros at each pixel location, resulting in invalid values after
normalization. To obtain a valid output, a value close to
zero (i.e., 1 × 10−20) was used instead. In addition, one RF
channel data point at the center of the input was set to 1
to achieve a normalized image that was representative of the
input and distinguishable from the second binary input. This
second binary input was a matrix of ones surrounding a center
pixel value of 1 × 10−20 to address the same normalization
challenges described above.

A matrix of random samples drawn from a Gaussian dis-
tribution with mean µ = 0 and standard deviation σ = 1
was created to be the third type of artificial RF channel data.
To maintain the same range as the zeros and ones input data
described above, the random input values were normalized to
the range [0, 1].

B. Evaluation metrics

For each output, the mean of the envelope detected image
was calculated. With the binary inputs, the mean pixel values
of the ground truth and DNN outputs are expected to be
approximately zero or one. Similarly, with the random input,
the DNN-generated images are expected to produce mean pixel
values close to that of the ground truth output.

Image-to-image comparisons for identical input data were
evaluated based on L1 and L2 losses:

l1 =
1

N

N∑
n=1

|xn − yn| (1)

l2 =

√√√√ 1

N

N∑
n=1

|xn − yn|2 (2)

where x and y denote the Pytorch DAS and the DNN output
image being compared after envelope detection, and N is the
total number of pixels.

III. RESULTS AND DISCUSSION

A. Baseline evaluation

Fig. 1 shows the output log-compressed B-mode images
created with the publicly available Plane-wave Imaging Chal-
lenge for Medical Ultrasound (PICMUS) data [12], which
was also used to train Network C. The network-produced
output images were similar to their respective ground truths,
confirming that the networks were loaded properly prior to
the overfitting evaluation. In particular, Network C performed
well on the dataset used for training of this DNN and generated
cleaner images than the ground truth. Without further analysis,

Fig. 1. Baseline evaluation on PICMUS data [12] with images displayed at
60 dB dynamic range.

it remains a question as to whether this is a true improvement
or simply a reflection of overfitting.

B. Zeros input

The top row of Fig. 2 shows images created with the zeros
input. Networks A and B produced images that look similar
to the ground truth. In particular, the point spread function
(PSF) of the singular center pixel with a value of 1 seems

Fig. 2. Network-produced images with artificial RF channel data inputs,
including zeros (top), ones (middle), and Gaussian noise (bottom).
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TABLE I
MEAN OF ENVELOPE-DETECTED IMAGES AND NUMBER OF TRAINABLE PARAMETERS

Zeros Ones Gaussian Noise Number of Learned Parameters
Ground truth 0.0052 0.9998 0.2326 0
Network A 0.0068 0.9953 0.0858 3, 059
Network B 0.0034 0.8186 0.2366 2, 226, 146
Network C 0.0871 0.0619 0.0966 54, 408, 833

TABLE II
L1 LOSS AND L2 LOSS BETWEEN THE GROUND TRUTH AND NETWORK-PRODUCED IMAGES

Zeros Ones Gaussian Noise
L1 loss Ground truth vs. Network A 0.0018 0.0045 0.1653

Ground truth vs. Network B 0.0018 0.1812 0.1403
Ground truth vs. Network C 0.0718 0.9394 0.1849

L2 loss Ground truth vs. Network A 3.20× 10−5 0.0005 0.0415
Ground truth vs. Network B 3.16× 10−5 0.0040 0.0316
Ground truth vs. Network C 0.0087 0.8846 0.0492

to be represented. However, Network C did not replicate the
ground truth PSF and instead created an image that is similar
to its training data (see top left of Fig. 1).

Table I reports the mean of envelope detected image output
and Table II reports L1 and L2 losses between ground truth
and network-produced images. The mean value of pixels in
images created with the zeros input are generally similar to
their respective ground truths, with the exception of Network
C, which shows the greatest deviation from the ground truth.
In addition, Network C produced an image that has the largest
L1 and L2 losses among the three networks. These qualitative
and quantitative results indicate that Network C is overfitting
to the training data.

C. Ones input

The middle row of Fig. 2 shows the output images with the
ones input. Networks A and B generated images that look like
the ground truth. Similar triangular patterns are represented at
the top corners. However, Network C created an image similar
to one of its training data (see Fig. 1) without reproducing the
ground truth.

With the ones input, the mean values of envelope-detected
images generated by Networks A and B are similar to that of
the ground truth, which is close to one, as shown in Table I.
The output image of Network C has a mean value that shows
the greatest deviation from the ground truth. Table II shows
that Network C produced an image that has the largest L1
and L2 losses among the three neural networks, indicating the
worst match between the output image of Network C and the
ground truth. The above qualitative and quantitative analyses
reveal the overfitting problem of Network C.

D. Gaussian random input

The bottom row of Fig. 2 shows the output B-mode images
with the Gaussian random input. Networks A and B produced
images that have similar noise samples as the ground truth
while Network C still created an image that looks like its
associated training data (see Fig. 1).

The mean of the envelope-detected image produced by
Network B is close to that of the ground truth while Networks
A and C both generated images with greater deviations of
mean values from the ground truth, as shown in Table I. The
last column of Table II reports similar L1 and L2 losses among
the three networks. The above results using the Gaussian
random input show that the quantitative measurements are not
suitable for identifying overfitting, and qualitative comparisons
are more useful in this case.

E. Number of learned parameters

There are various reasons for overfitting of DNNs. Networks
with more complexity have the greater potential to overfit
[17]. Network complexity is determined by the number of
learned parameters (i.e., the number of layers and the number
of neurons in each layer) in each network. The same approach
employed to obtain the number of learned parameters for
Networks A and B [11] was applied to Network C, with all
values reported in the last column of Table I. Network C has
1-4 orders of magnitude larger number of trainable parameters
compared to that of Networks A and B, which is one of the
possible reasons for the overfitting observed with Networks
C. Nonetheless, the results in Sections III-B through III-D
show that the overfitting of DNNs trained to output ultrasound
images can be rapidly identified by the three artificial channel
data introduced herein.

IV. CONCLUSION

This work is the first to introduce three types of artificial
channel data that are input to DNNs trained to output ul-
trasound images with the goal of rapidly identifying DNN
overfitting. With the binary image inputs, DNN overfitting
can be rapidly identified by the qualitative observations, the
greatest difference in mean pixel values, and the largest L1
and L2 losses between the network-produced images and the
ground truths. With the random image input, overfitting can be
rapidly identified by the qualitative observations between the
network output and the ground truth. The proposed approach
does not require a time-consuming retraining process using the
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training code and training data or the collection of additional
test data. Instead, images produced by existing DNNs were
evaluated after inputting the proposed artificial channel data
to provide more rapid identification of network overfitting
when compared to traditional overfitting detection approaches.
Results demonstrate that the proposed method is promising
to be used as a general evaluation approach to overfitting
detection with DNNs trained to output ultrasound images,
and possibly other types of medical images. In addition, this
approach has the potential to provide a new layer of oversight
for regulatory bodies tasked with approving the deployment
of DNNs on patient data.
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