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Abstract—Our related journal article presents a theoretical
framework to relate the performance of photoacoustic-based
computer vision systems to the parameters of the underlying
photoacoustic imaging systems. However, software-based adjust-
ments were not previously included. In this paper, we extend the
previous framework to include software-based noise reduction
algorithms (e.g., frame averaging). We derive expressions for
generalized contrast-to-noise ratio (gCNR) predictions in frame-
averaged photoacoustic images. These gCNR predictions are
validated against histogram-based gCNR measurements, with
mean absolute errors of 4.4×10−3 and 7.7×10−3 in the phantom
and ex vivo environments, respectively. This extension reduced
the mean absolute prediction error by 7.74% and 27.15%
when compared to predictions with the previous photoacoustic
framework applied to frame-averaged photoacoustic images from
phantom and ex vivo data, respectively. Results demonstrate
that our extended framework more accurately predicts target
detectability in frame-averaged photoacoustic images, which is
beneficial for photoacoustic-based computer vision systems.

Index Terms—photoacoustic imaging, image processing

I. INTRODUCTION

THE integration of computer vision, robotics, and photoa-
coustic imaging for medical applications has garnered

increasing interest in recent years. One problem of inter-
est involves predicting the performance of computer vision-
based tasks with photoacoustic images as inputs [1]–[5].
Our recently published journal paper presented a theoretical
framework which leveraged the generalized contrast-to-noise
ratio (gCNR) [6], [7] to relate computer vision-based system
performance to the parameter values of the underlying pho-
toacoustic imaging system [8].

This framework was initially limited to analyzing the im-
pact of hardware-based system parameters (e.g., laser energy,
channel SNR) on image quality and system performance
[8]. However, software algorithms (e.g., beamforming, frame
averaging) are additionally implemented to improve image
quality and interpretability. These algorithms are known to
affect the target and background statistics in the resulting
images, which in turn impacts the resulting gCNR and achiev-
able system performance. Thus, understanding the impact of
software components will further expand our ability to design
and optimize photoacoustic imaging systems.

In this paper, we extend our previously presented theoretical
framework to analyze the effect of software algorithms on
photoacoustic image quality. In particular, we explore the
application of frame averaging as a software-based noise

reduction technique. We derive the effect of the frame aver-
aging technique on the statistics of the target and background
regions of the image, and provide mathematical expressions
for gCNR predictions in frame-averaged photoacoustic im-
ages. Finally, we demonstrate the improved ability of this
expanded framework over the previous ultrasound-based [6],
and photoacoustic-based [8] frameworks to predict gCNR in
frame-averaged photoacoustic images.

II. THEORY

A. General Framework

Fig. 1 shows our framework, expanded to include software-
based techniques as a parameter of the imaging system. The
framework consists of four layers (i.e., system parameters,
target and background power distributions, image quality
metrics, and computer vision-based task performance). The
solid black lines denote relationships investigated in this paper
to derive theoretical expressions for gCNR in frame-averaged
photoacoustic images, while the dashed gray lines represent
relationships outside of the scope of this paper.

Fig. 1. Directed graph illustrating relationships among the system parame-
ters, signal power distributions, image quality metrics, and performance of
computer vision tasks. The solid black lines denote relationships reported
in this paper. The dashed gray lines denote relationships which are known
to exist, but lie outside the scope of this paper. kt = shape of target power
distribution; θt = scale of target power distribution; kb = shape of background
power distribution; θb = scale of background power distribution.
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B. Modeling gCNR in Frame Averaged Photoacoustic Images

1) Approach Overview: The gCNR metric was introduced
as a normalized measurement of the highest achievable per-
formance of an optimal two-class classifier on a given pho-
toacoustic image [6], [7], represented as,

gCNR = 1−
∫ ∞

x=0

min{pt(x), pb(x)}dx, (1)

where x is the pixel power, and pt and pb are the proba-
bility density functions (PDF) of the target and background,
respectively. The performance of this classifier depends on
the target and background power statistics in the photoa-
coustic image. Therefore, to predict the gCNR of a frame-
averaged photoacoustic image, we first model the target and
background power statistics (Section II-B2), then determine
decision boundaries and predicted gCNR from the modeled
statistics (Section II-B3), similar our previously implemented
approach [8].

2) Target and Background Power Statistics: We assume that
N frames of photoacoustic channel data are acquired from a
stationary target in the set Sch:

Sch = {C1, C2, ..., Ci, ..., CN} , (2)

where Ci is the ith frame of channel data acquired in the
set Sch. N channel data frames in Sch are averaged prior to
delay-and-sum (DAS) beamforming (represented as operator
fD) to form the frame-averaged photoacoustic image, Yavg:

Yavg =

N∑
i=1

Yi

N
, (3)

where Yi = fD (Ci) is the image reconstructed using DAS
beamforming from the individual channel data frame Ci.

We utilize the gamma distribution to model the target power
statistics in Yavg with probability density function (PDF) pt
and parameters kt and θt similar to our previously presented
framework [8]. In addition, we model the background power
statistics using the gamma distribution with PDF pb and
parameters kb and θb.

3) Computing Decision Boundaries: With the target and
background power statistics presented in Section II-B2, we
equate the target and background PDFs to obtain the following
expression for the decision boundaries ϵm of the optimal
classifier,

e

(
1
θt

− 1
θb

)
ϵm =

(
θkb

b Γ (kb)

θkt
t Γ (kt)

)
ϵkt−kb
m . (4)

Eq. (4) can be satisfied with four possible cases derived from
the values of kt, θt, kb, and θb.

Case 1: kt ̸= kb and θt ̸= θb. In this first case, there
are up to two points of intersection between the target and
background power distributions, given by:

ϵm = − c

a
× LambertW

((
−a

c

)(1

b

) 1
c

)
. (5)

Fig. 2. Experimental setups showing a 2 mm-diameter optical fiber bundle
inserted into (a) a plastisol phantom and (b) an ex vivo caprine heart. Both
experimental setups were imaged with an Alpinion SP1-5 probe.

where a = 1
θt

− 1
θb

, b =
(
θkb

b Γ (kb)
)
/
(
θkt
t Γ (kt)

)
, and

c = kt−kb. This case is similar to Case 1 in [8] and leverages
the same method to compute the numerical values of the
decision boundaries. However, the gamma-distributed model
of the background power is responsible for differences in the
values of a, b, and c when compared to Case 1 in [8], which
employs an exponential background power distribution.

Case 2: kt ̸= kb and θt = θb. In this second case, with kt ≥
0, θt ≥ 0, and kb ≥ 0, Eq. (4) is satisfied by the expression,

ϵ0 = θt ×
(
Γ (kt)

Γ (kb)

) 1
kt−kb

. (6)

The single non-negative value of ϵm which satisfies Eq. (6)
forms the decision boundary in Case 2.

Case 3: kt = kb and θt ̸= θb. In this third case, Eq. (4) is
satisfied by the expression,

ϵ0 = ktθtθb

(
ln θb − ln θt
θb − θt

)
, (7)

which yields the single decision boundary for Case 3.
Case 4: kt = kb and θt = θb. The fourth case occurs in

photoacoustic images with sufficiently low channel SNR such
that the target and background regions are indistinguishable,
resulting in identical PDFs for the target and background
power. This case is similar to Case 4 in [8], with no optimal
decision boundaries for classification.

Once the decision boundaries of the optimal classifier were
computed, the strategy presented in Section II-B5 of [8]
was implemented to compute gCNR predictions for frame-
averaged photoacoustic images.

III. METHODS

To investigate the relationship between gCNR and frame
averaging, we interfaced one end of a 2 mm-diameter fiber
bundle to an LS-series pulsed laser diode (PLD) (Laser Com-
ponents, Bedford, NH, USA). The other end was inserted into
a plastisol phantom and an ex vivo caprine heart as shown
in Fig. 2. An Alpinion SP1-5 probe (Alpinion, Seoul, South
Korea) was placed in contact with each imaging environ-
ment. The probe was interfaced to an Alpinion E-CUBE 12R
ultrasound scanner. The PLD was pulsed at a wavelength
of 905 nm, a fixed repetition rate of 20 Hz, and 99 and
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88 unique laser energy levels in the phantom and ex vivo
environments, respectively. At each laser energy level, 100
frames of photoacoustic data were acquired by the ultrasound
system. The corresponding laser energy values were then
measured using an EnergyMax laser energy meter (Coherent,
Inc. Santa Clara, CA, USA).

The acquired channel data frames were averaged and pho-
toacoustic images were reconstructed from the frame-averaged
channel data using DAS beamforming. Circular regions of
interest (ROI) were manually selected in the target and
background of each resulting image. The diameters of these
ROIs were 1.6 mm and 0.8 mm for the phantom and ex
vivo images, respectively. These diameters were chosen to
match the sizes of the targets in each dataset. The target
and background ROIs were located at the same depth, with
a lateral offset of 5 mm between them in each image. This
offset was selected to minimize the overlap between signal
and noise while ensuring that the ROIs were as close to each
other as possible. Measurements of the gCNR metric were
obtained in each image using the histogram-based approach
described in [8]. In addition, gCNR was predicted using the
mathematical expressions derived in Section II. The mean
absolute error (MAE) ∆gFA was computed between the gCNR
predictions and measurements. The gCNR metric was also
predicted using the photoacoustic and ultrasound frameworks
presented in [8] and [6], respectively. The corresponding
MAE values ∆gPA and ∆gUS were computed for each gCNR
measurement and prediction using the previous photoacoustic
[8] and ultrasound [6] frameworks , respectively. Finally, the
relative improvement ∆g of the extended framework over
the previous photoacoustic framework was computed in the
phantom and ex vivo environments.

IV. RESULTS

Fig. 3 shows the photoacoustic images of the optical fiber
in a plastisol phantom and ex vivo caprine heart, acquired with
laser energies of 0.36±0.03 µJ and 0.37±0.02 µJ, respectively,
with 1, 10, and 100 channel data frames averaged prior to
DAS beamforming. Images of the phantom demonstrated an
improvement in gCNR predictions from 0.68 to 0.94 to 100
with no, 10, and 100 frames averaged, respectively. Images
of the ex vivo images were noiser with no frame averaging,
producing a gCNR of 0.41. The noise variation in the selected
background region increased then decreased when 10 and
100 channel data frames were averaged, resulting in gCNRs
of 0.33 and 0.69, respectively. This gCNR improvement of
0.36 achieved with 100 frames averaged is comparable to
the gCNR improvement of 0.32 achieved with 10 frames
averaged in the phantom environment. These results indicate
that the effectiveness of frame averaging varies among imaging
environments, even for similar laser energies.

Fig. 4 shows the measured and predicted gCNRs obtained
from frame-averaged phantom and ex vivo images as functions
of the number of frames averaged, separated by laser energy
levels. The following three distinct trends are observed. First,
in Fig. 4(a), the laser energy levels were too low for frame

Fig. 3. Photoacoustic delay and sum (DAS) beamformed images of a 2
mm-diameter optical fiber bundle in a plastisol phantom and an ex vivo
caprine heart, acquired with laser energies of 0.36±0.03 µJ and 0.37±0.02
µJ, respectively, with (a,d) 1, (b,e) 10, and (c,f) 100 channel data frames
averaged prior to DAS beamforming. The target and background regions of
interest are denoted by the orange and blue circles, respectively.

averaging to significantly improve gCNR in the phantom, with
the mean predicted gCNR remaining between 0.11±0.05 and
0.25±0.09. Second, in Figs. 4(b) and 4(d), image quality
improved as the number of frames averaged increased from
1 to 100, with the mean predicted gCNR monotonically
increasing from 0.12±0.01 to 0.45±0.07 with phantom data
and from 0.21±0.01 to 0.66±0.07 with the ex vivo data.
Third, in Fig. 4(e), the improvement in gCNR achieved with
20 frames averaged (0.30±0.10 to 0.84±0.07) was higher
then the improvement achieved by increasing the number of
frames from 20 to 100 (0.84±0.07 to 0.94±0.04). Finally, in
Figs. 4(c) and 4(f), the laser energy was sufficiently high to
yield high gCNR values without frame averaging. Thus, the
gCNR improvement as the number of frames increased from
1 to 100 was minimal in comparison to the previous trends
(i.e., 0.98±0.05 to 0.99±0.01 and 0.86±0.18 to 1.00±0.01 in
the phantom and ex vivo tissue, respectively). These results
demonstrate that the dependence of frame averaging on both
laser energy and imaging environment.

Table I reports the MAE between histogram-based gCNR
measurements and gCNR predictions using the framework
introduced herein, our previous photoacoustic framework [8],
and the original ultrasound-based framework [6]. Our frame-
work outperformed both previously introduced frameworks in
both the phantom and ex vivo imaging environments. Thus,
modeling the background power statistics with the gamma
distribution rather than the exponential distribution utilized
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Fig. 4. gCNR as a function of the number of frames averaged prior to
DAS beamforming of a 2 mm-diameter optical fiber bundle with one end
interfaced to a Pulsed Laser Diode (PLD) and the other end inserted into
(a,b,c) a plastisol phantom and (d,e,f) an ex vivo caprine heart. The plots are
separated by input PLD settings with measured laser energies in the ranges
(a) 0.07±0.03 µJ to 0.10±0.04 µJ, (b) 0.16±0.04 µJ to 0.27±0.03 µJ, (c)
0.36±0.03 µJ to 10.95±0.04 µJ, (d) 0.37±0.02 µJ to 0.62±0.02 µJ, (e)
0.79±0.02 µJ to 1.25±0.02 µJ, and (f) 1.4±0.02 µJ to 10.7±0.02 µJ.

TABLE I
MEAN ABSOLUTE ERRORS BETWEEN PREDICTED AND MEASURED GCNR

VALUES IN PHANTOM AND EX VIVO DATASETS

∆gFA ∆gPA [8] ∆gUS [6] ∆g (%)

Phantom 4.4× 10−3 4.7× 10−3 2.9× 10−2 7.74
Ex Vivo 7.7× 10−3 1.1× 10−2 9.6× 10−2 27.15

in the previous frameworks improves the accuracy of gCNR
predictions for frame-averaged photoacoustic images.

V. DISCUSSION & CONCLUSIONS

This paper presents an expansion of our recently introduced
theoretical gCNR framework to characterize the effect of soft-
ware algorithms (i.e., frame averaging) on photoacoustic image
quality. We presented theoretical derivations of mathematical
expressions for gCNR predictions in frame-averaged photoa-
coustic images, and compared the performance of the extended
framework with the previous ultrasound-based and hardware-
based photoacoustic frameworks in phantom and ex vivo
imaging environments. This framework has the potential to be
extended to other software-based image quality improvement
algorithms, allowing for the prediction of the performance of
computer vision-based systems in an increasingly wide variety
of clinical applications.

The results in Figs. 3 and 4 demonstrate the overall effec-
tiveness of frame averaging to improve photoacoustic image
quality. However, this improvement is tempered by lower
frame rates, which may be concerning for the clinical applica-
bility of real-time computer vision-based systems. In addition,
the effectiveness of frame averaging was demonstrated to de-
pend on factors such as the imaging environment (Fig. 3) and
laser energy (Fig. 4). These results indicate that photoacoustic-
based computer vision systems would benefit from allowing
users to configure the number of frames averaged prior to
image reconstruction, which would allow users to select a
frame-averaging setting corresponding to the desired image
quality and achievable frame rate for a given surgical or
interventional application.

The extension of our previous photoacoustic framework re-
duced the errors between gCNR predictions and measurements
in frame-averaged images, as shown in Table I. These results
demonstrate the impact of statistical models on the accuracy
of our theoretical gCNR predictions. This paper presents a
working strategy to further expand our theoretical framework
to accommodate additional software algorithms, beginning
with a statistical analysis of the target and background statis-
tics, followed by derivations of mathematical expressions of
gCNR predictions in the resulting images, which is expected
to increase the accuracy of predictions surrounding the perfor-
mance of photoacoustic imaging systems.
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