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ABSTRACT

In photoacoustic-guided surgery, it is important to differentiate between critical structures that provide
photoacoustic contrast. We developed a novel dual-wavelength atlas method to differentiate between two chro-
mophores using only two optical wavelengths. In this work, we report our methods to optimize this approach by
varying six parameters: absolute value, modulation frequency, filter bandwidth, kernel size, number of principal
components, and number of nearest neighbor classifiers. Sensitivity, specificity, and balanced accuracy were the
three metrics used to determine the optimal value for each parameter. An iterative process was used to determine
the optimal set of parameters by changing each parameter one at a time and finding which value returned the
highest combination of sensitivity and specificity. The optimal parameters included using the non-absolute value
of the radiofrequency signals, a modulation frequency of 1 MHz, a bandwidth of 140%, a kernel size of 60 pixels,
1 principal component, and 1 nearest neighbor classifier. These parameters improved the mean ± one standard
deviation of balanced accuracy from 0.78 ± 0.12 to 0.88 ± 0.16 in the dual wavelength atlas method. The speed
of delivering this algorithm was further optimized by implementing a GPU coherence beamforming approach to
selecting regions of interest for the frequency analysis. These results are promising for surgeons using contrast
agents during photoacoustic-guided surgery.

1. INTRODUCTION

Differentiation of tissues and biomarkers is anticipated to be an essential component of complex photoacoustic-
guided surgery approaches to visualize surgical tools and avoid major blood vessels, nerves, and other critical
structures.1–3 Spectral unmixing techniques may be employed to differentiate photoacoustic responses originating
from these structures.4–8 These techniques consist of generating an overdetermined system of equations (i.e.,
more equations than variables) from the signal response of each chromophore at different laser wavelengths,
which can then be solved with an optimization technique based on the known optical absorption coefficient for
each chromophore at each wavelength.9,10 Despite their effectiveness, these spectral unmixing techniques are
less desirable for real-time applications because of the lengthy acquisition time requirements associated with
transmitting multiple laser wavelengths.

To overcome the challenges of spectral unmixing, we recently developed a dual-wavelength acoustic-frequency-
based atlas method.11,12 This method considers differences in acoustic frequency spectra and provides infor-
mation for differentiation among photoacoustic biomarkers for surgical guidance (e.g., contrast agents, blood
vessels). By using coherence imaging13 to segment photoacoustic signals of interest, the dual-wavelength at-
las method differentiates surgical biomarkers using only two optical wavelengths, which is highly desirable for
surgical guidance. This method was initially reported with a mean balanced accuracy of 78% when differen-
tiating between methylene blue and blood.11 In addition, the translation of the current method to real-time
applications is limited by the high processing times of the coherence mask used to identify regions of interest
for analysis. Computation times can potentially be reduced by generating masks from graphical processing
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unit (GPU)-based short-lag spatial coherence (SLSC) images,14 rather than the previous central processing unit
(CPU)-based coherence approach.13

This paper presents our approach to optimization of the novel dual-wavelength atlas method for the differen-
tiation of an exogenous chromophore (i.e., methylene blue) and an endogenous chromophore (i.e., human blood)
by varying six parameters utilized in the extraction and classification steps (i.e. absolute value, modulation
frequency, filter bandwidth, kernel size, number of principal components, and number of nearest neighbor classi-
fiers). Balanced accuracy was the primary optimization metric and an iterative process was used to determine the
optimal set of parameters by changing each parameter one at a time. Finally, the reduction of processing times
for the dual-wavelength atlas method was explored when segmenting the signals of interest with GPU-SLSC
beamforming instead of the previous CPU-based coherence beamforming.13

2. METHOD

2.1 Data acquisition

Photoacoustic signals from methylene blue (MB) and human blood (Hb) were acquired from a phantom
setup.11 A polyvinyl chloride-plastisol (PVCP) was fabricated with length, width, and height of 29 cm, 18 cm,
and 10 cm, respectively. The phantom contained ten cylindrical hollow chambers. Each of these chambers had a
diameter of 15 mm and a depth of 55 mm. Two of the hollow chambers were filled with a 1% weight-by-volume
aqueous solution of MB and Hb, and a 1-mm-diameter optical fiber was inserted in each of the filled chambers.
These fibers originated from a bifurcated fiber bundle that was connected to a Phocus Mobile laser (Opotek
Inc., Carlsbad, CA, USA), transmitting laser light with wavelengths ranging 690-950 nm in 10 nm increments.
The tip of each optical fiber was positioned approximately 15 mm below the top surface of the chambers, and
photoacoustic signals were generated with an energy of 4 mJ at each fiber tip. The generated photoacoustic
signals were received by an Alpinion L3-8 linear array ultrasound probe that was positioned on the lateral wall
of the phantom, as described in our previous publication.11

2.2 Dual-wavelength atlas method

Fig. 1 shows an overview of the dual-wavelength atlas method. First, ground-truth labels of MB and Hb were
segmented from locally weighted short-lag spatial coherence (LW-SLSC) images,13,15 using a regularization factor

Figure 1: Pipeline of the dual-wavelength atlas method
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of α = 1 and an axial correlation kernel of 2λ, where λ is the wavelength associated with the center frequency
of the L3-8 ultrasound probe. Binary segmentation was performed using a -6 dB threshold mask applied to the
LW-SLSC images. A frequency analysis was performed over the magnitude of the pressure waves, which were
either zero or positive, rather than the original pressure waves used for conventional beamforming, which have
positive and negative values. For each material (i.e., MB and Hb), the normalized power spectra were calculated
from a sliding window of axial kernels of in-phase and quadrature (IQ) data. Then, principal component analysis
(PCA) was applied to the power spectra of photoacoustic signals acquired at each laser wavelength. The principal
components were stored in an “atlas” describing each material. Finally, when evaluating the spectra of a test
signal, nearest neighbor (k-NN) classification was applied with the L2-norm as the measure of distance between
the PCA of the test spectra and the PCA of the spectra within the atlas.

2.3 Image quality metrics

MB and Hb were considered to be the positive and negative samples, respectively, when calculating sensitivity,
specificity, and balanced accuracy metrics of the classification performance. The formula for each of these metrics
are given by:

Sensitivity =
TMB

TMB + FHb
, (1)

Specificity =
THb

THb + FMB
, (2)

Balanced Accuracy =
Sensitivity + Specificity

2
, (3)

where TMB , THb, FMB , and FHb are the number of true MB, true Hb, false MB, and false Hb pixels, respectively.

2.4 Parameter optimization

To maximize the balanced accuracy of our approach (see Eq. 3), the parameters for in-phase quadrature
demodulation, PCA, and NN were optimized through an iterative search. These parameters were the modulation
frequency, filtered bandwidth, axial kernel size, number of principal components to use, and the k nearest
neighbors used to determine the most common class in k-NN clustering. During each analysis, the optimal
parameter found from the previous step was saved and used to find the new output until the optimal set of
parameters were found. For the IQ-modulation, different combinations of bandwidth of 80-240% in intervals of
20% were tested with the modulation frequency varied from 2 MHz to 12 MHz in intervals of 2 MHz. Similarly,
the axial kernel size was explored from 11 to 51 axial samples in increments of 2. For the PCA, the principal
components were varied from 10 to 200 in steps of 10 and then from 1-10 in steps of 1. Finally, the NN classifier
was analyzed by changing the classifier to 2-NN through 10-NN in increments of 1. The initial parameters were
obtained from a previous publication in our group.11 To speed up the optimization process, the iterations were
conducted on a reduced dataset obtained with laser wavelengths ranging from 690 nm to 950 nm in 30 nm
increments. Table 1 shows the parameters considered for optimization, their initial value, and the optimized
value that achieved the highest balanced accuracy for differentiating MB and Hb.

2.5 Optimization of processing times

To reduce the computational time consumed by LW-SLSC beamforming, the performance of the optimized
dual-wavelength atlas method was explored with testing data obtained from GPU-SLSC masks. First, the
parameters of the GPU-SLSC beamforming and the binary threshold were adjusted in order to achieve the
closest match to the original LW-SLSC masks. Cumulative lag sum M and axial wavelength λ were varied from 1
to 10 in steps of one and from 1 to 4 in steps of 0.2, respectively, and the binary threshold to generate the masks
was set to 0.7. Then, the Dice coefficient (DSC)16 was used as a metric to maximize the similarity between
GPU-SLSC masks and the original LW-SLSC masks. After finding the optimal pair of M and λ, the optimal
threshold for binary segmentation was found by varying the binary threshold from 0.1 to 0.98 in steps of 0.02 and
using the DSC to maximize the similarity between generated masks. Computation times were estimated for 1
frame of each wavelength for both LW-SLSC and GPU-SLSC masks. The LW-SLSC and GPU-SLSC algorithms
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Table 1: Summary of optimized parameters for the dual-wavelength atlas method

were executed with an Intel Core i5-6600K CPU and a NVIDIA Titan Xp GPU, respectively, both of the devices
installed on the same computer. Finally, the statistical significance of performance differences between LW-SLSC
and GPU-SLSC was evaluated with a Mann-Whitney U test.17

3. RESULTS

Fig. 2 shows the classification results achieved before and after parameter optimization. The mean balanced
accuracy of classification results for the dual-wavelength atlas method are displayed in Fig. 2(a). Each pixel
displays the average accuracy of classifying methylene blue and blood for a specific wavelength pair over 10
frames, with redundancies of wavelength pair information represented as black pixels in the bottom left half of
each image. Although 36 wavelength pairs were used for the optimization process, this result shows the balanced
accuracy for a total of 351 wavelength pair combinations. For wavelength pairs located in the mid-wavelength
region (outlined in white), the mean ± one standard deviation of balanced accuracy increased from 86.2 ± 7.2%
with the initial parameters reported in Table 1 to 96.7 ± 7.7% when using optimized parameters. In contrast,
for wavelength pairs located outside the mid-wavelength region, the balanced accuracy decreased from 74.67 ±
8.3% to 67.40 ± 8.9%. The number of wavelength pairs residing above a pre-defined balanced accuracy threshold
of 95% increased from 25 wavelength pairs with the initial parameters to 217 with the optimized parameters.
This increase of wavelength pairs leads to an increase in available options for differentiating methylene blue
from hemoglobin. Fig. 2(b) shows a summary of the sensitivity, specificity, and balanced accuracy for all of the
wavelength pairs investigated before and after optimization. The mean ± one standard deviation of sensitivity
showed no significant change from 91.6 ± 16.8% to 90.9 ± 14.8%. However, an increase in specificity was observed
from 70.7 ± 16.9% to 81.7 ± 20.9%, which in turn resulted in an overall increase of specificity from 81.5 ± 10.4%
to 85.9 ± 17.1%.

Fig. 3 shows the process of finding the parameters that generated GPU-SLSC masks most similar to the
LW-SLSC masks. Fig. 3(a) shows the mean DSC from 27 laser wavelength emission obtained when comparing
the original LW-SLSC masks with GPU-SLSC from different combinations of M and λ and a coherence threshold
of 0.7. Fig. 3(b) shows the DSC obtained when comparing the original LW-SLSC masks with GPU-SLSC masks
generated from M = 5, λ = 4, and varying the coherence threshold for binary segmentation. The GPU-SLSC
masks generated with M = 5, λ = 4, and a coherence threshold of 0.75 was the most similar to LW-SLSC masks
with a mean ± one standard deviation DSC of 63.3% ± 4.2%.

Fig. 4 shows the classification results achieved when switching between LW-SLSC masks and the similar
GPU-SLSC masks. The mean balanced accuracy for 36 wavelength pairs when using LW-SLSC and GPU-SLSC
masks is shown in Fig. 4(a). A comparative summary of the sensitivity, specificity, and balanced accuracy for

Proc. of SPIE Vol. 11960  119600A-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



(a)

(b)

Figure 2: Classification performance results of the dual-wavelength atlas method before and after parameter
optimization. (a) Mean balanced accuracy across 10 frames for each wavelength pair. (b) Comparison of
sensitivity, specificity, and balanced accuracy obtained from Mask 1, 2, and 3.

(a) (b)

Figure 3: Comparison of LW-SLSC masks with GPU-SLSC masks using the Dice coefficient (DSC). (a) Mean
DSC (from 27 wavelengths) obtained when comparing the original LW-SLSC masks with GPU-SLSC masks
generated from different combinations of M and λ and a coherence threshold of 0.7. (b) DSC obtained when
comparing the original LW-SLSC masks with GPU-SLSC masks generated from M = 5, λ = 4, and varying the
coherence threshold for binary segmentation. Each error bar is generated from measurements of 27 wavelengths.
The highest mean DSC is represented by the dotted box and dotted line for (a) and (b), respectively.

the different masks is shown in Fig. 4(b). The mean ± one standard deviation of sensitivity for LW-SLSC and
GPU-SLSC was 91.0 ± 17.6 % and 90.6 ± 17.7%, respectively, representing a minimal differences between the
two approaches. In contrast, the specificity increased from 83.9 ± 24.1% to 86.5 ± 22.5% when switching from
LW-SLSC to GPU-SLSC masks. This increase in specificity resulted in an increase of balanced accuracy from
87.4 ± 18.2% to 89.2 ± 16.9% for LW-SLSC and GPU-SLSC, respectively. However, the difference of balanced
accuracy was not statistically significant (p>0.001). Finally, a summary of computation times for a single frame
are shown in Fig. 4(c), where the GPU-SLSC achieved a speed up factor of approximately 60.2x. Each box plot
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(a)

(b) (c)

Figure 4: Classification performance results of the dual-wavelength atlas method with optimized parameters
tested on data extracted from different coherence masks. (a) Mean balanced accuracy across 10 frames for each
masks and wavelength pair. (b) Comparison of sensitivity, specificity, and balanced accuracy obtained from
LW-SLSC and GPU-SLSC masks. (c) Comparison of processing times for a single photoacoustic frame using
LW-SLSC and GPU-SLSC.

represents the computation times from a total of 27 frames (i.e., one frame per laser emission wavelength). In
addition, the difference between computation times achieved with GPU-SLSC and LW-SLSC was statistically
significant (p<0.001).

4. DISCUSSION

The increased specificity with the optimized parameters for the dual wavelength method demonstrates an
increased capacity for the algorithm to differentiate blood from methylene blue, as blood was considered as
negative sample for the specificity metric (see Section 2.3). Similarly, the higher balanced accuracy with more
wavelength pairs leads to an increase in available options for differentiating methylene blue from hemoglobin.
This is particularly important during image-guided surgeries, where additional chromophores are present and
their photoacoustic response can interfere with the classification algorithm for a specific wavelength pair. To
avoid this interference, a surgeon might switch to a different wavelength-pair emission with similar classification
performance between Hb and MB.

Regarding the decreased mean balanced accuracy observed in Fig. 2(a) for wavelength pairs outside the mid-
wavelength region, we envision the use of a reduced set of wavelength pairs, choosing those that maximize the
sensitivity, specificity and accuracy (i.e., mostly occurring in the mid-wavelength region) and otherwise omitting
wavelength pairs that result in poor classification performance. Therefore, the regions with lower accuracy will
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not be considered, and the reduced accuracy is not necessarily a limitation of the optimized dual-wavelength atlas
method. Instead, the increase of 192 available wavelength pairs with a balanced accuracy > 95% is considered to
provide abundant flexibility when utilizing the optimized dual-wavelength atlas method to differentiate methylene
blue from hemoglobin.

The changes in sensitivity, specificity, and balanced accuracy between the LW-SLSC and the chosen GPU-
SLSC is explained by the low DSC calculated for the most similar GPU-SLSC mask (i.e., 63.3%). However,
the changes in classification performance were not statistically significant, whereas the difference in computation
times when switching from LW-SLSC masks to GPU-SLSC masks was statistically significant with a 60.2x speed
up factor. Therefore, by using GPU-SLSC for the segmentation of signals of interest, the dual-wavelength atlas
method can be further optimized for faster processing times to enable real-time time implementations.

5. CONCLUSION

We optimized a novel acoustic-based atlas method for the differentiation of methylene blue and blood based of
an iterative search of six parameters. The optimized version of the dual-wavelength atlas method can detect blood
more accurately. In addition, the mean balanced accuracy across multiple wavelength-pair combinations was
improved after parameter optimization. This improvement led to an increase in the number of wavelength pairs
available to differentiate chromophores of interest with 95% accuracy, offering more flexibility for implementation
of our algorithm in clinical practice. Similarly, the use of GPU-SLSC for signal segmentation further optimized
the dual-wavelength atlas method for faster processing times, which has the potential to benefit operators of
photoacoustic-guided surgery technology that is powered by real-time software.
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[6] Gröhl, J., Kirchner, T., Adler, T., and Maier-Hein, L., “Estimation of blood oxygenation with learned
spectral decoloring for quantitative photoacoustic imaging (LSD-qPAI),” arXiv preprint arXiv:1902.05839
(2019).
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