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Abstract—Ultrasound imaging is often used as a diagnostic
tool to supplement mammography particularly in patients with
dense breast tissue, because the ability of a mammogram to
detect cancer is significantly lower in these patients. However,
when breast tissue is dense, interactions between tissue layers
can result in acoustic clutter in the ultrasound image, obscuring
masses of interest and resulting in more false positives with
increasing breast density. This work investigates the impact of
breast density on a quantitative coherence-based metric, lag-one
coherence (LOC). Greater separability was seen between fluid
and solid masses within dense breast tissue compared to non-
dense breast tissue. Specifically, the sensitivity and specificity
for fluid-filled mass detection in non-dense breast tissue were
0.768 and 0.688, respectively, which improved to 0.911 and 0.898,
respectively for masses within dense breast tissue. These insights
support deployment of LOC as a quantitative differentiation
tool, particularly for patients with dense breasts who are most
commonly referred for ultrasound exams resulting in unnecessary
biopsies due to the presence of acoustic clutter.

I. INTRODUCTION

Breast cancer is the most common cancer among women
and the second leading cause of cancer death [1]. Ultrasound
imaging is often used as a supplement to mammography to
diagnose breast cancer, particularly in patients with dense
breast tissue, because mammographic sensitivity (i.e., the
ability of a mammogram to detect cancer) is significantly
lower in patients with dense breast tissue [2]. However, in the
ACRIN 6666 trial, more false positives were seen in ultrasound
with increasing breast density [3], which is indicative of an
interaction between dense breast tissue and the effectiveness
of ultrasound.

One potential cause of this decreasing performance of
ultrasound with increasing breast density is acoustic clutter.
Acoustic clutter is a noise artifact in ultrasound images that
appears as diffuse echoes obscuring masses of interest [4] and
is often caused by interactions between tissues layers. Due to
the heterogeneity of breast tissue, breast ultrasound images are
particularly susceptible to this noise caused by acoustic clutter.

To combat the effects of acoustic clutter, previous work
has demonstrated that coherence-based beamforming can re-
move acoustic clutter and improve the differentiation be-
tween solid and fluid-filled breast masses [5], [6]. Rather
than displaying traditional brightness information, coherence-
based beamforming displays the spatial coherence of received
signals across the ultrasound transducer, thereby removing

contributions of incoherent clutter sources [7], [8]. This co-
herence information can be displayed as a clinical overlay
to aid in diagnosis [9]. Focusing on one specific coherence-
based feature, previous work investigated lag-one coherence
(LOC) as a quantitative coherence-based metric to improve
this differentiation between solid and fluid-filled breast masses
[10]. LOC measures the spatial coherence of the backscattered
ultrasound data from neighboring elements across the receive
aperture [11] and is useful as a quantitative metric that does
not require complete formation of an image or require reader
input [10].

Drawing on the insights from this body of literature that
dense breast tissue introduces increased levels of acoustic clut-
ter, coherence-based beamforming can remove acoustic clutter,
and LOC is effective at distinguishing solid from fluid breast
masses, we hypothesize that breast tissue density will have an
impact on the performance of LOC when distinguishing fluid
from solid breast masses. To investigate this hypothesis, the
work in this paper quantitatively assesses the LOC for several
masses in both dense and non-dense breast tissue through a
histogram analysis. In addition, we stratify the LOC values
by breast density and compare the accuracy, sensitivity, and
specificity of fluid-filled mass detection within each tissue
type. Finally, we present LOC images to visualize qualitative
differences between masses in both dense and non-dense breast
tissue.

II. METHODS

A. Data Acquisition

Twenty-four patients with twenty-seven suspicious hypoe-
choic breast masses were enrolled in our ongoing study after
informed consent and approval from the Johns Hopkins In-
stitutional Review Board. Patients were scanned immediately
prior to their scheduled core-needle biopsy using an Alpinion
ECUBE12R research ultrasound scanner connected to either
an Alpinion L8-17 or Alpinion L3-8 linear ultrasound trans-
ducer. Raw radiofrequency (RF) data were acquired, saved,
and processed offline.

In addition to the ultrasound data, the mammographic breast
density of each patient was retrospectively determined from
their most recent mammogram. Mammographic breast density
is broken down into four categories [12]: (A) almost entirely
fat, (B) scattered fibroglandular densities, (C) heterogeneously
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dense, and (D) extremely dense. These categories can be
further reduced into non-dense breast tissue (combining A
and B) and dense breast tissue (combining C and D). Patients
with no prior mammogram were excluded from this analysis
because mammographic breast density was unknown.

B. Lag-one Coherence

Raw RF data was processed off-line to measure lag-one
coherence (LOC) [11], using the following equation to achieve
a single coherence function:

R̂[m] =
1

N −m

N−m∑
i=1

∑n2

n=n1
si[n]si+m[n]√∑n2

n=n1
s2i [n]

∑n2

n=n1
s2i+m[n]

(1)

where N is the number of elements in the transducer, m is
the number of elements between two points in the aperture,
or lag, si[n] is a time-delayed, zero-mean signal received at
element i from depth n. This calculation was performed with
an axial correlation kernel of size k = n2 − n1 equal to one
and a half wavelengths. To calculate LOC, Eq. 1 was evaluated
at m = 1. LOC was calculated for each location n within a
region of interest (ROI) at the center of each breast mass,
resulting in multiple LOC values for each mass. The LOC
values were then assessed based on mass type and stratified
by mammographic breast density.

C. Statistical Analysis

Sensitivity and specificity of fluid-filled mass detection were
measured by parameterizing the measured LOC values and
varying the LOC threshold for fluid-filled mass detection. LOC
values above the threshold were classified as solid and LOC
values below the threshold were classified as fluid. Specifi-
cally, sensitivity and specificity were measured as follows:

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

where a true positive (TP) or false negative (FN) was defined
as a pixel within a fluid-filled mass with an LOC value below
or above a specific LOC threshold, respectively. A true nega-
tive (TN) or false positive (FP) was defined as a pixel within a

TABLE I
SENSITIVITY, SPECIFICITY, AND OPTIMAL LOC THRESHOLD TO

DISTINGUISH FLUID FROM SOLID MASSES.

Type Number
of Masses Sensitivity Specificity LOC

Threshold
Non-Dense 13 0.768 0.688 0.347
Dense 14 0.911 0.898 0.307
All 27 0.853 0.829 0.337

solid mass with an LOC value above or below a specific LOC
threshold, respectively. With these measurements, a receiver
operating characteristic (ROC) curve was used to determine
the optimal LOC threshold value by measuring the distance to
the ideal operating point of (0,1).

III. RESULTS & DISCUSSION

Table I shows the sensitivity, specificity, and optimal LOC
threshold to distinguish fluid from solid masses for each
stratification of breast density. The sensitivity and specificity
of the optimal LOC threshold for the 27 masses included in
this study were 0.853 and 0.829, respectively. Stratifying these
results by breast density reveals greater separability between
fluid and solid masses in dense breast tissue. Specifically, the
sensitivity and specificity of the optimal LOC threshold in non-
dense breast tissue (13 masses total) were 0.768 and 0.688,
respectively, which improved to 0.911 and 0.898, respectively
in dense breast tissue (14 masses total). Rounded to one
significant figure, the optimal LOC thresholds reported in
Table I were similar for both dense and non-dense breast
tissue.

Fig. 2 shows example B-mode and LOC images for one
fluid-filled and one solid mass within each dense and non-
dense breast tissue. The center of the diverging colorbar was
determined based on the optimal LOC threshold shown in
Table I (i.e., 0.337 for all masses). Because the LOC images
are displayed with the same colorbar, the improved separation
between solid and fluid-filled masses can be visualized in
Fig. 2(c) where the blue is darker inside the fluid-filled mass in
dense breast tissue compared to Fig. 2(a) where the fluid-filled
mass is in non-dense breast tissue.

Fig. 1. Histograms of lag-one coherence (LOC) showing a distinction between solid and fluid in (a) all masses and masses in the two subsets of (b) non-dense
and (c) dense breast tissue. (d) Associated ROC curves showing a greater area under the curve for masses surrounded by dense breast tissue (compared to
masses surrounded by non dense breast tissue).



Fig. 2. Example (left) B-mode and (right) LOC images for fluid-filled (a,c) and solid (b,d) masses within (a,b) non-dense and (c,d) dense breast tissue.

These results demonstrate that the differentiation between
fluid-filled and solid masses is improved when the mass
is within dense breast tissue. When breast tissue is dense,
the additional interactions between tissue layers increase the
incoherent noise within fluid-filled masses, which corresponds
to a decrease in LOC, and is likely responsible for the
increased separability. These insights support deployment of
LOC as a quantitative differentiation tool, particularly for
patients with dense breasts who are most commonly referred
for ultrasound exams and could generate confusing images
(leading to uncertainty in diagnoses, unnecessary biopsies, and
greater patient anxiety) due to the presence of acoustic clutter.

While the LOC images in Fig. 2 significantly differ from
the typical B-mode ultrasound images, they could also be
presented in the form of a clinical overlay similar to the
coherence-based overlay presented in [9]. In addition, because
LOC is a single quantitative tool, it can potentially add
quantitative information to the diagnostic pipeline, similar to
the quantification provided by some elastographic techniques
such as supersonic shear imaging [13]. Although LOC was
computed offline for this study, the same values can be
computed in real-time by employing graphical processing units
(GPUs) [14] or deep learning [15].

IV. CONCLUSION

This paper summarizes the impact of breast density on
the lag-one coherence (LOC) of hypoechoic breast masses.
When stratified by mammographic breast density, the LOC
within fluid-filled masses is decreased, resulting in increased
separation between fluid-filled and solid breast masses. These

results are promising for the use of LOC as a quantitative
differentiation tool, particularly for patients with dense breasts
who are more often referred for ultrasound exams.
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[15] A. Wiacek, E. González, and M. A. L. Bell, “CohereNet: A Deep
Learning Architecture for Ultrasound Spatial Correlation Estimation and
Coherence-Based Beamforming,” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 2020.


