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Abstract—Breast ultrasound is often used as a supplement to
mammography. However, standard breast ultrasound imaging
often has a high false positive rate which limits its use as a
screening tool. The spatial coherence of ultrasound signals has
particularly impactful implications for breast mass diagnoses
when considering both quantitative ultrasound and coherence-
based ultrasound beamforming techniques. However, coherence
can be computationally expensive to compute. Our recent work
demonstrated a novel deep neural network architecture, named
CohereNet, which has the ability to estimate coherence features
by leveraging the universal approximation properties of deep
neural networks. The work in this paper extends the CohereNet
architecture to perform binary classification and extract unique
features from raw ultrasound data that differentiate benign
from malignant breast masses. This extended network classified
breast masses as benign or malignant with 83% classification
accuracy when tested with data that was not used during
training. With the CohereNet architecture as the backbone of this
extended network, we leverage coherence features during training
and ultimately display network-modified coherence functions.
Overall, our extended network architecture and training strategy
are promising for a new class of deep learning methods that
simultaneously extract features from raw ultrasound data, retain
physical interpretations, and diagnose breast masses as benign
or malignant.

I. INTRODUCTION

Ultrasound is often used as a diagnostic tool to supplement

mammography. However, the false positive rate of breast ul-

trasound can be as high as 93% depending on the type of mass

under investigation [1]–[3]. Alternatives to improve this false

positive rate often involve examining the features encoded

in backscattered ultrasound waves. For example, quantitative

ultrasound (QUS) relies on features within raw backscattered

ultrasound data to differentiate benign from malignant breast

masses using techniques such as the backscatter coefficient

(BSC), effective scatterer diameter (ESD), and effective acous-

tic concentration (EAC), as well as envelope statistics through

the fitting of models such as the homodyned-K distribution

[4]. In particular, the homodyned-K distribution includes the

estimation of a parameter, k, which is a measure of the

ratio of the coherent to diffuse signal energy [4]. In one

study investigating quantitative ultrasound parameters of in

vivo breast lesions, this k parameter revealed a statistically

significant difference between benign and malignant breast

lesions [5].

There are additional coherence-based parameters that can

be estimated through the analysis of the spatial coherence

of backscattered ultrasound waves to benefit breast mass

diagnosis. For example, the short-lag spatial coherence (SLSC)

beamformer creates images based on spatial coherence infor-

mation [6] with one goal of improving the distinction between

solid and fluid-filled breast masses [7], [8]. This possibility

was further refined by developing a custom clinical overlay [9].

In addition, our group later demonstrated that the distinction

between solid and fluid-filled masses can be achieved without

requiring image formation or reader input, which was possible

with a quantitative coherence-based feature known as lag-one

coherence [10].

The combination of previous studies demonstrating multiple

uses of spatial coherence information in breast mass diagnosis

highlights the overall diagnostic power of this physical feature

contained within backscattered ultrasound waves. However,

the calculation of spatial coherence from backscattered ultra-

sound data can be computationally intensive. Therefore, previ-

ous work leveraged the universal approximation properties of

deep neural networks (DNNs) to improve the computational

complexity of computing the coherence function. Specifically,

a network architecture named CohereNet was developed to es-

timate spatial coherence functions while retaining the integrity

and benefits of SLSC beamforming [11], [12]. Considering

that we successfully developed this deep learning framework

to efficiently estimate spatial coherence functions, we believe

that there is additional potential to extract useful diagnostic

information that combines spatial coherence information, deep

learning, and breast mass classification to determine whether

a suspicious breast mass is benign or malignant.

The objective of this paper is to extend our deep learning

framework to analyze raw backscattered ultrasound data and

extract useful features that distinguish benign from malig-

nant breast masses. This new framework leverages coherence

features by building on the CohereNet architecture. We then

visualize the impact of class labels (i.e., benign or malignant)

on what we term a network-modified coherence function,

which can be thought of as a spatial coherence function that

encodes both spatial coherence and the specific diagnosis of

the breast mass.
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II. METHODS

A. Datasets

Seventeen patients with suspicious hypoechoic breast

masses were enrolled in our study after informed consent

and approval from the Johns Hopkins Medicine Institutional

Review Board (IRB). Raw radio-frequency (RF) ultrasound

channel data were acquired immediately prior to a scheduled

core-needle biopsy using an Alpinion ECUBE12R research

ultrasound scanner connected to either an Alpinion L8-17

or Alpinion L3-8 linear ultrasound transducer. These data

included two transducer locations per patient (i.e., one radial

and one anti-radial) and 20 scans per transducer location.

Similar to the pre-processing performed for the original

CohereNet architecture [12], these data were pre-processed by

computing the coherence function (i.e., spatial coherence as a

function of element spacing):

R̂(m) =
1

N −m

N−m
∑

i=1

∑

k sk,i(n)sk,i+m(n)
√

∑

k s
2
k,i(n)

∑

k s
2
k,i+m(n)

, (1)

where m is the lag in number of elements, N is the number of

receive elements in the transducer, sk,i(n) is a time-delayed,

zero-mean kernel consisting of k axial samples, each received

at element i and centered at depth n. In addition, due to

the sliding window of selected active receive subapertures of

the Alpinion linear array, the training data were filtered to

only include the center scanlines which contained N = 64
active receive elements for each computation. These coherence

functions were computed over an axial kernel k = 7 samples,

resulting in the input to the network, sk(n) = {sk,i(n) ∀ i =
1, ..., N}.

To ensure inclusion of pixels from regions associated with

the core-needle biopsy diagnosis, a region of interest (ROI)

was defined at the center of each solid mass. This ROI

definition was performed by visualizing both the reconstructed

B-mode image and the annotated clinical screeshot to ensure

only pixels within the solid mass were selected. Each pixel in

this ROI corresponds to one axial kernel of raw channel data

and represents one input to the neural network, sk(n). The

output of the neural network was the binary classification (i.e.,

benign or malignant), which was defined based on the result

of the core-needle biopsy. Each ROI contains approximately

1,000 pixels, resulting in 1,000 input/output pairs per scan.

Considering the 17 patients, 20 scans per patients, and 1000

input/output pairs per scan, the complete dataset consisted of

approximately 340,000 input/output pairs.

This dataset of input kernels and output binary labels

was then divided into training, validation, and testing set

individually by patient. Eleven patients were assigned to the

training set, 3 patients were assigned to the validation set,

and the remaining 3 patients were assigned to the testing set.

Separating the dataset by patient ensured that the features

learned by the network were not specific to the patients in

the training set.

Fig. 1. Extended CohereNet architecture. The gray block indicates the output
layer of the original CohereNet architecture which is now the network-
modified coherence function.

TABLE I
EXTENDED COHERENET ARCHITECTURE

Layer Type Size Activ.

Input - 7 x 64 -
1 Fully Connected 7 x 64 ReLU
2 Fully Connected 7 x 128 ReLU
3 Fully Connected 7 x 128 ReLU
4 Fully Connected 7 x 64 Tanh

Output 1 Average Pool 1 x 64 -
5 Fully Connected 1 x 64 ReLU
6 Fully Connected 1 x 64 ReLU

Output 2 Fully Connected 1 x 2 Softmax

B. Network architecture

Extending from the previously demonstrated CohereNet

architecture [12], the extended network architecture adds three

fully connected layers which offer 8,450 additional trainable

parameters to perform binary classification. The complete ar-

chitecture is shown in Fig. 1, where “Output 1” is the original

output of CohereNet and represents the estimated coherence

function. “Output 2” represents the additional classification

task and is a vector of length two representing the two-class

binary classification (i.e., benign or malignant). To prevent

overfitting, weights within layers 5 and 6 were randomly set

to 0 with a probability of 50% during the training phase.

The network was trained using Keras [13] with a Tensorflow

backend [14]. Fine tuning was performed by initializing the

network with the optimized weights from CohereNet and

freezing the first three fully connected layers (represented by

the lighter blue color in Fig 1). The remaining layers were

allowed to update through the training process. The network

was trained with a batch size of 64, an Adam optimizer [15],

and a learning rate of 0.001 over twenty epochs. Training was

performed on a system with an Intel Xeon E7 processor and

four Tesla P40 GPUs with 24 GB of memory.

III. RESULTS & DISCUSSION

Given an input axial kernel of channel data, the network was

able to classify the kernel of raw ultrasound data as benign



Fig. 2. Original coherence functions (averaged over multiple masses) and
mean ± one standard deviation of network-modified coherence functions for
benign (blue) and malignant (purple) masses.

or malignant with an overall classification accuracy of 83% at

Output 2. This accuracy is calculated from a test set containing

60 regions of interest within 3 different masses not included

during training or validation.

Fig. 2 shows visualizations of the mean ± one standard

deviation of network-modified coherence functions for cor-

rectly classified masses obtained at Output 1. These network

modified coherence functions were compared to the standard

computation for coherence functions (i.e., calculated using

Eq. 1) and are referred to as “original coherence functions”.

These original coherence functions were obtained by averaging

over the coherence functions of correctly classified benign and

malignant kernels of channel data. In addition, the average of

these two original coherence functions is plotted in gray in

Fig. 2. In comparison to the original coherence functions, the

network-modified coherence functions are distinctly different

between benign and malignant masses, particularly at short

lag values (i.e., m < 8). These network-modified coherence

functions also deviate from the respective original coherence

functions for both benign and malignant breast masses.

These results indicate that the proposed network architecture

and training strategy are promising for the future use of

deep learning with raw ultrasound data to retain physical

interpretations while diagnosing benign or malignant breast

masses. By initializing the network with CohereNet weights,

we guided the network to leverage coherence information,

which likely aided in differentiating benign from malignant

masses. This approach enables us to visualize the network-

modified coherence functions, which can be used as a classi-

fication tool. Future work will focus on deriving a theoretical

framework for the observed differences in benign-encoded and

malignant-encoded coherence functions.

IV. CONCLUSION

This paper is the first to leverage deep learning to extract

unique features from raw backscattered ultrasound data with

the primary goal of differentiating benign from malignant

breast masses. As a secondary goal, we additionally visualized

how learned breast mass classification features affect network-

modified coherence functions. Overall, these results indicate

that the proposed framework and training strategy are promis-

ing for the future use of deep learning with raw ultrasound

data to retain physical interpretations while diagnosing benign

or malignant breast masses.
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