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Abstract—Visual servoing is a robotic method that has the
potential to assist surgeons with tracking tool tips when attached
to optical fibers to create photoacoustic images that are au-
tonomously monitored. Currently, this approach must be tested
with multiple image frames and multiple laser energies prior
to each surgery in order to identify the minimum required
energy that will not cause system failure over the number of
frames tested. This study investigates possible integration of
the generalized contrast-to-noise ratio (gCNR) into pre-surgical
procedures as a method to predict system failure from only
a single image frame. Photoacoustic data were acquired from
an optical fiber inserted in a plastisol phantom or in the left
ventricle of an in vivo swine heart. Raw data were processed with
delay-and-sum (DAS) and short-lag spatial coherence (SLSC)
beamforming (M = 25). gCNR values were estimated from
a 3 mm x 3 mm region of interest (ROI) surrounding the
photoacoustic target coordinates provided by the visual servoing
algorithm. The prediction function modelled from phantom data
was fit with R2 values of 0.992 and 0.991 for DAS and SLSC
beamformers, respectively. When applying this fit to the in vivo
test data, the RMSE between measured segmentation accuracy
and the prediction functions was 9.34% for DAS images and
4.78% for SLSC images. These results indicate that the newly
introduced image quality metric gCNR has sufficient robustness
to predict the performance of visual servoing segmentation tasks
and thereby mitigate the burden, time, and requirements of
testing multiple image frames prior to the initiation of a surgery.

I. INTRODUCTION

Visual servoing [1] is a promising approach to maintain
visualization of surgical tool tips and nearby anatomical targets
during minimally invasive procedures. The approach broadly
refers to vision-based robot control. The robot “vision” that
we focus on in this paper is provided through photoacoustic
images [2], [3].

Photoacoustic imaging is achieved by transmitting pulsed
light to a structure of interest, which absorbs the light, under-
goes thermal expansion, and generates an acoustic response
that is received by a conventional ultrasound probe [4]. This
photoacoustic imaging technique was previously demonstrated
for multiple applications that require surgery or interventions
[5], such as visualization of brachytherapy seeds [6], [7], in-
travascular imaging [8], cardiac catheter visualization [3], and

endonasal surgeries [9], [10]. In these applications, structures
of interest include blood vessels, nerves, drill tips, and catheter
or needle tips [3], [11]. In addition, one or more optical fibers
may be coupled to the tool, catheter, or needle tips in order
to transmit the light pulses [11], [12].

For image-guided surgery procedures, photoacoustic-based
visual servoing involves three main steps. First, a photoa-
coustic signal is created, then processed in real time with a
conventional delay-and-sum beamformer or with an advanced
beamforming technique [13]. Second, the photoacoustic image
is processed by a segmentation algorithm in order to identify
patterns or a specific target in a region of interest, such as the
tip of an optical fiber attached to a cardiac catheter [3]. Finally,
the robot moves the ultrasound probe to laterally center the
target in the displayed image. This movement is applied based
on the difference of the estimated centroid of the segmented
mask and the lateral center of the imaging plane.

The success of the segmentation task relies on the photoa-
coustic image quality, which can often be enhanced by increas-
ing the incident laser energy. On the other hand, increasing
the laser energy must be performed within safety limits. To
strike an appropriate balance between these two competing
interests [14], a series of calibration tests may be conducted
prior to surgery to assess segmentation performance at multiple
laser energies. Depending on the number of energy levels
tested before identifying an optimal value, this calibration
step can be time-consuming. In addition, consecutive failure
events will trigger a regional search task that may cause the
ultrasound probe placement to deviate from its target position
[13]. Therefore, a faster calibration method is required, which
can be achieved by necessitating only one image to make
predictions about segmentation accuracy for visual servoing.

This study investigates the integration of the generalized
contrast-to-noise ratio (gCNR) [15], [16] into pre-surgical
procedures as a method to predict system failure of visual
servoing tasks from the analysis of a single image frame.
We created models of segmentation accuracy as a function
of image quality (based on calibrated phantom data), referred
to as segmentation prediction curves. These predictions were
then compared with the segmentation accuracy obtained with
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corollary data obtained from an in vivo swine heart. Segmen-
tation prediction curves were first created using the image
quality metric of gCNR, then compared with results achieved
with signal-to-noise ratio (SNR), contrast, and contrast-to-
noise ratio (CNR) as alternative image quality metrics.

II. METHOD

A. Data acquisition

The photoacoustic imaging equipment consisted of a 1-
mm-diameter optical fiber connected to a Phocus Mobile
laser (Opotek Inc., Carlsbad, CA, USA). The laser was syn-
chronized to receive signals from an E-CUBE 12R research
ultrasound system (Alpinion, Seoul, South Korea) connected to
either an L3-8 linear array ultrasound probe or a SP1-5 phased
array ultrasound probe (Alpinion, Seoul, South Korea). When
using this system to acquire data from the following phantom
and in vivo experiments, 50 frames were acquired per reported
laser energy.

To perform phantom experiments, the free end of the optical
fiber was inserted into a plastisol phantom at 24 mm depth
from the L3-8 ultrasound probe. To ensure that the tip of
the optical fiber was positioned within the imaging plane, a
laser energy of 1.00 mJ was set, and the ultrasound probe
was translated across the elevation axis until the amplitude of
the photoacoustic signal was maximized. After the ultrasound
transducer was fixed in position, photoacoustic data was ac-
quired with the fiber transmitting laser light with a wavelength
of 750 nm, with laser energies of 13.5, 43, 110, 120, 805, 1040,
1241, 1433, 1690, 1760, 1823, and 2330 µJ.

To perform in vivo cardiac experiments, a 1-mm-diameter
optical fiber was inserted within a cardiac catheter, which
was inserted in the femoral vein of an in vivo swine. The
catheter was then navigated through the inferior vena cava
toward the heart, with the ventricular septum as the final
destination. The fiber was located at 63 mm depth from the
SP1-5 ultrasound probe. Photoacoustic data were acquired
with a laser wavelength of 750 nm, with laser energies of
2.9, 6.4, 12.3, 18.7, 24.9, 31.0, 37.2, 43.3, 49.4, 55.6, 67.9,
80.2, 92.5, 104.7, 117.0, and 608.5 µJ. This in vivo procedure
was approved by the Johns Hopkins University Animal Care
and Use Committee.

B. Estimation of segmentation accuracy

Our framework for calculating the segmentation accuracy
of a visual servoing task is illustrated in Fig. 1. Raw data

Fig. 1: Framework for calculating the segmentation accuracy
of visual servoing tasks through a histogram analysis of gCNR

from each energy were processed with delay-and-sum (DAS)
and short-lag spatial coherence (SLSC) beamforming (M =
25) [17], both displayed with 15-dB dynamic range. The
visual servoing algorithm [3] then estimated the centroid of
the identified photoacoustic signal (i.e., tip of the optical fiber)
and stored the segmentation success or failure as a binary flag.
Following this step, gCNR [15], [16] values were estimated
from a 3 mm × 3 mm region of interest (ROI) surrounding
the target coordinates. Finally, a histogram analysis of the
successful and failed segmentation events was conducted over
50 bins of gCNR values, where the segmentation accuracy γ
for each gCNR bin number was determined using the equation:

γ(gCNR bin #) =
#SuccessgCNR

#SuccessgCNR + #FailuregCNR
× 100%.

(1)
To compare the segmentation accuracy between phantom

and in vivo experiments, a segmentation prediction curve was
first generated by fitting a sigmoid function to γ measurements
from the the phantom experiment. The prediction error was
then calculated by computing the RMSE between the seg-
mentation prediction curve and the γ obtained from the in
vivo experiment. For comparison, the method for calculating
γ in Eq. (1) was investigated by substituting gCNR with an
alternative image quality metric (i.e., SNR, contrast, or CNR).

C. Image quality metrics

The following definitions were used to calculate gCNR,
SNR, contrast, and CNR:

gCNR = 1−
N−1∑
k=0

min{hi(xk), ho(xk))} (2)

SNR = µi/σo (3)
Contrast = µi − µo (4)

CNR = |µi − µo|/
√
σ2
i + σ2

o , (5)

where h(xk) is a histogram evaluated at bin k centered on
xk, µ and σ represent the mean and standard deviation,
respectively, of signals within regions located inside and
outside the target, as represented by the subscripts i and o,
respectively. These metrics were evaluated on uncompressed
envelope-detected DAS images for and uncompressed SLSC
images. A total of 100 bins were used to create the histograms
for gCNR measurements.

III. RESULTS AND DISCUSSION

Fig. 2 shows examples of ultrasound images from the
in vivo swine heart, containing overlays of photoacoustic
images created with different beamformers and different laser
energies. With the lower laser energy (top row), the example
SLSC photoacoustic image shows improved visualization of
the target, producing a gCNR value of 0.96 in comparison
to 0.49 gCNR value produced with DAS, which resulted in
a failed segmentation. With the higher laser energy (bottom
row), the gCNR values obtained with DAS and SLSC were



Fig. 2: Examples of photoacoustic images from an in vivo
swine heart, processed with DAS and SLSC beamformers,
obtained with laser energies of 12.17 µJ and 608.5 µJ.
Photoacoustic images are overlaid on corresponding harmonic
ultrasound images.

Fig. 3: Estimated histograms of successful and failed segmen-
tation cases sorted by the gCNR value obtained with DAS and
SLSC beamforming.

0.89 and 0.99, respectively, and both results produced suc-
cessful segmentations while visual servoing based on these
images.

Fig. 3 shows example histograms of successful and failed
segmentation cases, sorted by the gCNR values obtained with
DAS and SLSC beamforming. The bin at gCNR=0 represents
failed segmentation events where no coordinates of the tar-
get were found after running the visual servoing algorithm.
Overall, segmentation fails more often for low gCNR values,
which are generally associated with lower laser energies. We
define a 50% γ threshold at the gCNR bin value where there
are similar counts of success and failure events (i.e., where
the red and blue bars that overlap are of similar height).

For the in vivo experiments reported at the bottom of Fig. 3,

DAS SLSC

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Segmentation prediction curves with datapoints show-
ing measured segmentation accuracy (i.e., γ) as functions of
the gCNR, SNR, contrast, and CNR of (left) DAS and (right)
SLSC images.

DAS and SLSC achieved 50% segmentation accuracy (i.e.,
50% γ) at gCNR values of 0.288 and 0.663, respectively, likely
because the signal region of the DAS image contains large
amplitude variations, which are known to decrease the gCNR
of photoacoustic images [15]. However, the visual servoing
algorithm compensates for these large amplitude variations
through various morphological operations [2]. Therefore, the
DAS segmentation is considered successful despite the low
gCNR value.

Fig. 4 shows the segmentation prediction curves modelled
from phantom data when using gCNR as the image quality
metric for the DAS (R2 = 0.992) and SLSC (R2 = 0.991)



beamformers. These data and predictions are replicated thrice
per beamformer in order to compare with segmentation pre-
diction curves when using SNR, contrast, and CNR as the
image quality metrics. Predictions are additionally compared
to the in vivo γ results (shown as triangles). With gCNR as
the image quality metric, the RMSE between in vivo data
and corresponding predictions was 9.34% for DAS images
and 4.78% for SLSC images. A summary of the R2 of each
sigmoid fit in Fig. 4 and corresponding RMSE values between
in vivo γ results and predictions are reported in Table I. Note
that the gCNR metric showed comparable performance to the
SNR and contrast metrics when predicting the segmentation
accuracy from DAS images, which further highlights that
our proposed approach using gCNR has the potential to be
independent of the chosen beamformer for visual servoing.

Regarding interpretation of the segmentation prediction
curves, one that contains a gradual (rather than steep) slope
is generally more beneficial. This feature is desired because
it enables more robust predictions in the presence of minor
frame-to-frame variations that cause large variations for a
particular image quality metric. Extending this concept to the
results in Fig. 4, the gCNR metric applied to SLSC images
contains the desired gradual changes more often. For example,
when selecting regions of comparable width from the x-axes
of Fig. 4, (e.g., 0.627-0.667 for gCNR and 0.863-1.197 for
CNR in Fig. 4(f)), the rate of change in segmentation accuracy
differs (e.g., gCNR results in a 14.78% change between the
first and last data points of the selected range, while CNR
results in a 44.78% change).

Overall, our results indicate that gCNR has sufficient ro-
bustness to predict the performance of visual servoing seg-
mentation tasks and thereby mitigate the burden, time, and
requirements of testing multiple image frames prior to the
initiation of a surgery. While these predictions may be possible
with alternative image quality metrics, the rate of change is
generally steeper, with the slope fixed based on the minimum
and maximum values measured with each metric.

TABLE I: Summary of R2 values (for segmentation prediction
curves) and RMSE (between predictions and in vivo results)
for each beamformer and image quality metric in Fig. 4

DAS SLSC
Image Quality Metric R2 RMSE R2 RMSE

SNR 0.935 6.39% 0.961 38.32%
gCNR 0.992 9.34% 0.991 4.78%

Contrast 0.998 7.91% 0.914 13.14%
CNR 0.988 10.45% 0.985 8.16%

IV. CONCLUSIONS

This work is the first to integrate gCNR, visual servoing, and
photoacoustic imaging. By modeling segmentation prediction
curves from phantom data, gCNR successfully predicts the
segmentation accuracy of in vivo photoacoustic DAS and
SLSC images. Overall, the proposed method has sufficient
robustness to predict the performance of visual servoing seg-
mentation tasks and thereby alleviate the burden, time, and

requirements of testing multiple image frames during prior to
a surgery or interventional procedure.
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