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Abstract—Modern ultra-wideband (UWB) radar systems
transmit a wide range of frequencies, spanning hundreds of
MHz to a few GHz, to achieve improved penetration depth
and narrower pulse width. A common challenge faced is the
presence of other commercial transmission equipment operating
in the same band, causing radio frequency interference (RFI).
To overcome this RFI issue, radar systems have been developed
to either avoid operating in bands with RFI or suppress the
RFI after reception. In this work, we examine both families
of operation and demonstrate that 1D convolutional neural
networks based on the UNet architecture can provide powerful
signal enhancement capabilities on raw UWB radar data. The
model is trained purely on simulated data and translated to real
UWB data, achieving impressive results compared to traditional
sparse-recovery baseline algorithms.

Index Terms—Spectral gap extrapolation, radio frequency
interference suppression, ultra-wideband radar, convolutional
neural network

I. INTRODUCTION

Ultra-wideband (UWB) radar systems have gained signifi-
cant traction due to their superior penetration capability and
improved imaging resolution [1]. The U.S. Army, for example,
has been developing UWB radar systems for detection of
difficult targets in foliage penetration [2], ground penetration
[3], and sensing-through-the-wall [4]. For superior penetration
ability, these systems must operate in the low-frequency spec-
trum that spans from under 100 MHz to several GHz.

As well as requiring low frequency operation for penetra-
tion, synthetic aperture radar (SAR) obtains high resolution
images by transmitting pulses with UWB — the wider the
pulse bandwidth in frequency, the narrower the pulse in time,
improving spatial resolution [1], [5], [6]. However, the trans-
mission of UWB pulses is often complicated by the presence
of other communication equipment sharing the same spectrum.
UWB radar signals span a wide spectrum that also includes
radio, TV, cellular phones, and other communication systems,
each of which inject radio frequency interference (RFI) into
the data.

This leaves the radar system with two approaches to solve
the problem. The first is to continue to transmit in those
bands and denoise the RFI-contaminated radar data after
reception [7], [8]. The second is to employ stepped-frequency
radars (SFRs) [9]–[11] with frequency hopping capabilities.
SRFs allow for the transmission of UWB pulses while still

maintaining precise control over the transmitted spectrum,
utilizing frequency synthesizers that can be configured to avoid
transmitting energy in prohibited/interference frequency bands.
Unfortunately, notches in the frequency domain caused by
this transmission method create strong sidelobes (or ringing
artifacts) in the received time domain data, which requires
further signal processing to ameliorate.

One could argue that the second approach (spectral gap
extrapolation) partially subsumes the first approach (RFI sup-
pression) — as one can always suppress frequency components
where there is heavy RFI by setting those Fourier coefficients
to zero and then proceeding to extrapolate the resultant spectral
gaps. However, this line of thinking has two major problems.
First, it is assumes that the operating spectrum affected by RFI
is known exactly, or else unnecessary performance degradation
will be introduced. Second, there are often better performing
pre-processing methods than notching RFI-affected radar data.
Thus, it is better to deal with each scenario separately.

Sparsity-based signal processing methods have achieved
great success in both suppressing RFI [12], [13] and perform-
ing spectral gap extrapolation [14]–[16] to combat frequency
notches. However, they still struggle to distinguish neighboring
and/or weak targets at fine resolution and performance drops
precipitously when the RFI bands (or notches) are wider or
affect more frequencies.

Deep neural networks (DNNs), and deep convolutional
neural networks (CNNs) in particular, have recently become
immensely popular for a wide variety of traditional signal
processing tasks like image segmentation [17], denoising [18],
and point source localization in the presence of noise [19],
displaying extremely impressive results. In the radar domain,
DNNs have been successfully used for target detection and
classification [20], antenna selection in cognitive radar [21],
interference mitigation [22] and vehicle detection [23] in
automotive applications, and activity recognition [24]–[26]
applications in indoor monitoring. For SAR specifically, image
despeckling [27], phase error correction [28], change detection
[29], ship detection [30] and discrimination [31], and image
reconstruction [32], [33] are just some of the problems where
deep learning has helped.

Past work from our group [34], [35] investigated the use of
a specific kind of deep neural network, called a generative
adversarial network (GAN) [36], to perform spectral gap
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extrapolation and obtained promising results. In this work, we
expand upon the prior work in three important ways. First,
in addition to spectral gap extrapolation, we also demonstrate
successful RFI suppression using a deep network. Second, we
demonstrate state-of-the-art results on real UWB SAR data.
Third, we demonstrate this success via a simple 1D CNN
based on the UNet [17] architecture, which is easier and more
stable to train than a GAN.

II. METHOD

The goal of this work is to successfully recover clean raw
UWB SAR data, x, from noisy observations, y, observed
by sensors. Specifically, we consider three kinds of noise:
(i) RFI, where the majority of the energy of the interfering
signal is located in a few frequency bands; (ii) random spectral
gaps, where several randomly chosen narrow spectral bands
are missing; and (iii) a block spectral gap, where a single
contiguous segment of the operating spectrum is missing.
We investigate the efficacy of using 1D UNet [17] CNNs to
remove each kind of noise – a different 1D UNet is trained for
each noise type – and compare it with competitive baselines.
The UNet is trained end-to-end (i.e., all layers are learned
simultaneously).

A. Ground-truth Dataset for Network Training

To create the clean training data, a sparsity-based linear
model widely employed in compressed sensing SAR [16] was
used. The scene of interest was modeled as a sparse collection
of independent point scatterers randomly distributed in space.
As the model is linear, it is assumed that the scatterers do not
interact with each other, and the final received signal is simply
the sum of reflections from each of the individual scatterers.
Mathematically, the model can be expressed as

x(t) =
∑
i

r(zi)p(t; zi) (1)

where x(t) is the received raw SAR signal, r(zi) is the
reflectivity of a point scatterer located at zi, and p(t; zi)
represents the point spread function of a scatterer with unit
reflectivity located at zi.

To implement (1), the template pulse p(t; 0) is linearly
shifted to represent the response from various locations p(t; z),
and the shifted pulses are stored as columns of a dictionary
P. Simulating data comes down to sampling possible sparse
code coefficients, r, to combine with the dictionary to yield
the received raw data

x = Pr. (2)

An advantage of this modeling approach over [35] is that we
operate on the received 1D data from each aperture element
individually, i.e., the geometry of the entire aperture does
not matter — a neural network trained on one geometry can
generalize to another. The actual image creation (slow-time
processing) is accomplished later.

The template pulse is sampled at 37.48 GHz and contains
most of its energy, as measured by the -12 dB points, between

380 and 2080 MHz. We set the signal dimension (i.e., the
lengths of x and r) to a fixed value of 1024 samples.

A total of 1,000,000 possible sparse codes were sampled
from realistic sparse code distributions mimicking coefficients
obtained in side-looking SAR to construct the ground-truth
training dataset. An additional 12,500 samples (of course,
with no intersection with the training set) were generated and
reserved as a clean simulated test set. Lastly, 3,600 samples
corresponding to two real data acquisitions of 1,800 samples
each from circular-sensing SAR were reserved as a clean real
test set. Each of these were then corrupted with noise to
generate paired clean+noisy data, as detailed in Section II-B.

B. Noise Modeling

In this work, we focus on three kinds of noise – RFI, random
spectral gaps, and a block spectral gap. Below, we provide
details on each and elaborate on their modeling.

1) Radio Frequency Interference: The scenario of RFI
occurs when an interfering source transmits most of its en-
ergy in a small subset of the spectrum of the UWB SAR.
Mathematically, this can be modeled as an additive noise:

yint = x+ i (3)

where i is the RFI signal and yint represents the observed
noisy data.

The RFI, i, used in this work is obtained from real RFI data
recorded over a long time horizon. We split the recorded RFI
signal into two parts — we use samples from the first half
to generate training data and samples from the second half to
generate test data. For each set, we mix a randomly chosen
clean signal and RFI samples at various signal-to-noise ratios
(SNRs) randomly chosen from -15, -10, -5, 0, 5, and 10 dB.

2) Random Spectral Gaps: The scenario of random spectral
gaps occurs when several narrowband sections of the radar
spectrum might be restricted and off-limits to data trans-
mission. Mathematically, this can be modeled as a masking
operation in the Fourier domain:

FFT (yrg) = mrg � FFT (x) (4)

where mrg is a binary mask. The total signal bandwidth is
divided into 10 narrow spectral bands and depending on the
missing percentage, several bands are masked to zero, while
the mask affecting the remaining coefficients is one. Here,
yrg represents the observed noisy data suffering from random
spectral gaps.

Noisy data corresponding to spectral missing percentages
of 50%, 60%, 70%, 80%, and 90% were generated for use
in training and testing by randomly choosing and eliminating
the chosen percentage of spectral coefficients from the ground-
truth data.

3) Block Spectral Gap: The scenario of a centered block
spectral gap occurs as the worst-case scenario when a con-
tiguous section of the radar spectrum centered on the middle
of the transmitted template pulse’s bandwidth (where most
of the pulse’s energy is located) is marked as restricted and
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Fig. 1. Proposed 1D UNet for UWB signal denoising. Noisy input data
degraded by one of RFI, random spectral gaps, or a centered block spectral
gap is denoised by the network trained on that noise type to yield an estimate
of the clean target signal.

not allowed for transmission. Mathematically, this too can be
modeled as a masking operation in the Fourier domain:

FFT (ybg) = mbg � FFT (x) (5)

where mbg is a binary mask of zeros and ones determining
which spectral coefficients are transmitted and which are
not available. Unlike mrg where the zeros are chosen to lie
randomly in several narrow spectral gaps, in mbg the vanishing
region is located contiguously around the center frequency of
the pulse. We use ybg to represent the observed noisy data
suffering from the centered block spectral gap.

Noisy data corresponding to spectral missing percentages
of 50%, 60%, 70%, 80%, and 90% were generated for use in
training and testing by setting to zero the chosen percentage
of spectral coefficients of the clean data.

C. Neural Network Details

The network architecture used in this study is an adaptation
of the popular UNet [17] architecture adapted to the 1D signal
processing scenario. A visualization of its structure with the
number of filters in each layer is presented in Fig. 1. It has a
fully convolutional encoder-decoder type architecture, with a
total of 20 layers – 10 layers each in the encoder and decoder.
Convolutional kernel size is set to 5, with encoder layers
having a stride of 2 to downsample the feature map in each
layer (except for the input layer, which has a stride of 1). The
decoder layers all have a stride of 2 to upsample the feature
map at each layer. Skip connections are employed to connect
encoder and decoder layers at the same level. Each layer
uses BatchNorm (BN) [37] and LeakyReLU as its nonlinearity
components (except for the output layer, which has neither).
Sub-pixel convolutions, also known as PixelShuffle [38], [39],
are used in the decoder as they seem to work better than
transposed convolutions and they reduce recovery artifacts.

The total number of trainable parameters in the network is
7,182,209.

A different network was trained for each noise type, but in
each case, a single network was trained to denoise all noise
conditions for the chosen noise type. All networks were trained
with L1Loss, or mean absolute error, as the loss criterion, using
the Adam optimizer [40] with a batch size of 64 and a learning
rate of 0.0001.

D. Baselines

For RFI suppression, we implement a simple but effective
frequency masking baseline. As most of the energy of the
bandlimited RFI signal was observed to be between 256 and
476 MHz, the Fourier coefficients of the noisy input data
between those limits were set to zero to yield a baseline
enhanced signal with which to compare our neural network
approach.

For spectral gap extrapolation on signals with random
spectral gaps, we implement a sparse coding baseline via
Orthogonal Matching Pursuit (OMP) [41] (or any of its
variants such as [42]), following the approach proposed in
[15], [16]. Similar to the way the dictionary P in (2) was
constructed, a dictionary P̃ was constructed by linearly shift-
ing a corrupted transmitted pulse (possessing the same random
spectral gap structure as the noisy data). Every random spectral
gap structure encountered required its own tailored dictionary.
Sparse coding was performed on the noisy input data using
this corrupted dictionary. Assuming robust sparse codes, we
obtained the recovered signal from the clean dictionary P. The
number of sparse coefficients in the OMP algorithm, K, was
tuned on the test data itself. While this is not possible in
practice, it does yield the best possible performance for the
baseline algorithm.

For spectral gap extraction on signals with a centered
contiguous gap, a sparse coding baseline very similar to the
one implemented for the random spectral gaps was used.
Here, since the gap structure remains the same for all data
at a specific missing percentage, the corrupted dictionary
with linearly shifted corrupted template pulses P could be
shared. Sparse coding was performed on the noisy input
data using this corrupted dictionary, and the sparse code thus
obtained was combined with the clean dictionary P to yield the
baseline enhanced signal. Again, we manually tune the OMP
hyperparameter, K, tuned on the test data itself to obtain the
best performance for comparison.

E. Evaluation

Quantitative evaluation of denoising performance is carried
out with the general purpose SNR metric reported in the dB
scale. It was measured as

SNR(x, z) = 20 log10
||x||2
||x− z||2

(6)

where x is the target clean signal, z is the signal being
compared to it, and ||.||2 is the `2 norm.
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Fig. 2. Data quality (measured by SNR in dB) for simulated and real noisy, baseline enhanced, and UNet enhanced data for (a) RFI affected data as a
function of input SNR, (b) random spectral gaps affected data as a function of missing percentage, and (c) a centered block spectral gap affected data as a
function of missing percentage. Best viewed in color.

Fig. 3. Visualization of real data denoising under challenging noise conditions.
(a), (e), and (i), are each the clean target data. (b) Noisy data suffering from
RFI with an SNR of -15 dB, (f) noisy data suffering from random spectral
gaps with a spectral missing percentage of 90%, and (j) noisy data suffering
from a centered block spectral gap with a spectral missing percentage of 90%.
(c), (g), and (k) are the enhanced outputs from each of the baseline methods.
(d), (h), and (l) are the enhanced outputs from each of the UNets trained to
tackle a specific noise type.

III. EXPERIMENTS

A. Radio Frequency Interference

Fig. 2(a) shows quantitative comparisons between the output
SNR (in dB) of the UNet-based approach and the baseline
approach that sets the Fourier coefficients affected strongly
by RFI to zero for various input SNR values. It is observed
that the UNet approach consistently outperforms the baseline
on both the simulated and real test data for all input SNR
values, delivering an average SNR gain (averaged over all
input SNR values) of 25.5 and 21.87 dB on simulated and
real data, respectively. In contrast, the baseline only yields
an average simulated and real SNR gain of 7.1 and 7.0 dB,
respectively.

To visualize these results, Fig. 3 (top row) shows (from left
to right) (a) clean target data, (b) noisy input data corrupted by
RFI, (c) baseline enhanced output data, and (d) enhanced out-
put data obtained from the UNet. All images are plotted with a

Fig. 4. Visualization of real data denoising under challenging noise conditions
for a single aperture element. A single representative aperture element is
chosen from Fig. 3 and the radar waveforms corresponding to clean, noisy,
baseline enhanced, and UNet enhanced data are plotted for RFI, random
spectral gaps, and a centered block spectral gap, in (a), (b), and (c),
respectively, with plots of the corresponding magnitude spectra in (d), (e),
and (f), respectively. Best viewed in color.

dynamic range of 40 dB. The specific example displayed here
is the real test data in the most challenging scenario when RFI
is very strong (input SNR is -15dB). As a result, the target
structure is barely visible in the noisy input data shown in
Fig. 3(b). The baseline algorithm enhances the image slightly,
but the UNet does significantly better, efficiently exploiting
the structure in the RFI signal and suppressing it.

We study the enhancement in more detail by plotting the 1D
radar waveforms received by a single representative aperture
element from Fig. 3 in Fig. 4(a). It is clear here too that the
UNet does a better job suppressing the RFI and recovering
the shape of the target pulse. This is confirmed again when
examining the corresponding magnitude spectra in Fig. 4(d).

Figs. 5 and 6 contain similar RFI denoising results for the
second real dataset under milder noise.

B. Random Spectral Gaps

Fig. 2(b) plots the SNRs (in dB) versus the missing spec-
trum percentage for noisy input affected by random spectral
gaps, baseline enhanced output, and UNet enhanced output,
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Fig. 5. (top) Visualization of real data denoising under milder noise condi-
tions. (a), (e), and (i), are each the clean target data. (b) Noisy data suffering
from RFI with an SNR of 0 dB, (f) noisy data suffering from random spectral
gaps with a spectral missing percentage of 50%, and (j) noisy data suffering
from a centered block spectral gap with a spectral missing percentage of 50%.
(c), (g), and (k) are the enhanced outputs from each of the baseline methods.
(d), (h), and (l) are the enhanced outputs from each of the UNets trained to
tackle a specific noise type.

Fig. 6. Visualization of real data denoising under milder noise conditions for
a single aperture element. A single representative aperture element is chosen
from Fig. 5 and the radar waveforms corresponding to clean, noisy, baseline
enhanced, and UNet enhanced data are plotted for RFI, random spectral gaps,
and a centered block spectral gap, in (a), (b), and (c), respectively, with plots
of the corresponding magnitude spectra in (d), (e), and (f), respectively. Best
viewed in color.

on both simulated and real test data. The UNet approach
consistently performs as well as or better than the baseline
on both simulated and real test data for all input SNR values,
delivering an average SNR gain (averaged over all input
SNR values) of 22.75 and 10.19 dB on simulated and real
data, respectively. In contrast, the baseline only yields an
average simulated and real SNR gain of 10.40 and 6.76 dB,
respectively.

The network output SNR here on real data is lower than
the case of RFI because we train our networks on simulated
data and there is a domain shift between the training data and
test data that negatively impacts network performance, which
is especially impactful when the noise is signal-dependent
like random spectral gaps. Thus, it is important to make our
training data as representative of real test data as possible.
This is the major current bottleneck to further improvements

within this framework.
Fig. 3 (middle row) shows (from left to right) (e) clean target

data, (f) noisy input data corrupted by random spectral gaps
setting 90% of the spectrum to zero, (g) enhanced output data
obtained from the OMP baseline, and (h) enhanced output data
obtained from the UNet. The UNet does well in recovering
the target clean data, outperforming the baseline in this severe
noise condition and recovering the target structures. The radar
signals recorded by a single representative aperture and its
magnitude spectra can be observed in Fig. 4(b) and (e),
respectively.

Figs. 5 and 6 contain similar random spectral gap extrapo-
lation results for the second real dataset under milder noise.

C. Centered Block Spectral Gap

Fig. 2(c) plots SNR (in dB) versus missing spectrum per-
centage for noisy input data affected by a centered block
spectral gap, baseline enhanced output, and UNet enhanced
output, on both simulated and real test data. The UNet-
based approach outperforms the baseline OMP approach on all
missing percentages on both simulated and real data, yielding
a SNR gain of 20.31 and 10.37 dB, respectively, compared to
7.60 and 3.51 dB, respectively. The network output SNR here
on real data though is lower than the case of RFI due to the
same data domain shift as elaborated on in Section III-B.

Fig. 3 (bottom row) shows (from left to right) (i) clean target
data, (j) noisy input data corrupted by a centered block spectral
gap setting 90% of the spectrum to zero, (k) enhanced output
data obtained from the OMP baseline, and (l) enhanced output
data obtained from the UNet. The UNet does well, largely
eliminating ringing artifacts and recovering target structural
information better than OMP. This observation is confirmed
by studying closely the radar signals recorded by a single
representative aperture and its magnitude spectra in Fig. 4(c)
and (f), respectively.

Figs. 5 and 6 contain similar block spectral gap extrapola-
tion results for the second real dataset under milder noise.

IV. CONCLUSION

In this work, we demonstrated the efficacy of using 1D UNet
networks to address three types of noise widely encountered
by a UWB SAR – bandlimited RFI, random spectral gaps,
and a contiguous block spectral gap, with the networks – one
trained for each noise type – achieving good results even in
challenging scenarios and displaying the recovery robustness
at multiple noise levels. We trained our model purely on
simulated data generated by a simple sparse linear model
and demonstrated the network’s remarkable generalization to
real test data. Since our approach operates on individual data
apertures, one key benefit is that the test sensor geometry is
no longer required to match the training sensor geometry. In
other words, our approach is less scene-dependent. In fact, we
trained our networks using synthetically generated data on a
side-looking geometry and successfully tested our networks
on raw SAR data collected from a circular 360◦-sensing
geometry.
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