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This article reviews deep learning applications in biomedical
optics with a particular emphasis on image formation. The
review is organized by imaging domains within biomedical
optics and includes microscopy, fluorescence lifetime imaging,
in vivo microscopy, widefield endoscopy, optical coherence
tomography, photoacoustic imaging, diffuse tomography, and
functional optical brain imaging. For each of these domains,
we summarize how deep learning has been applied and
highlight methods by which deep learning can enable new
capabilities for optics in medicine. Challenges and oppor-
tunities to improve translation and adoption of deep learning
in biomedical optics are also summarized. Lasers Surg. Med.
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INTRODUCTION

Biomedical optics is the study of biological light‐matter
interactions with the overarching goal of developing
sensing platforms that can aid in diagnostic, therapeutic,
and surgical applications [1]. Within this large and active
field of research, novel systems are continually being de-
veloped to exploit unique light–matter interactions that
provide clinically useful signatures. These systems face
inherent trade‐offs in signal‐to‐noise ratio (SNR), acquis-
ition speed, spatial resolution, field of view (FOV), and
depth of field (DOF). These trade‐offs affect the cost,
performance, feasibility, and overall impact of clinical
systems. The role of biomedical optics developers is to
design systems which optimize or ideally overcome these
trade‐offs in order to appropriately meet a clinical need.
In the past few decades, biomedical optics system de-

sign, image formation, and image analysis have primarily
been guided by classical physical modeling and signal
processing methodologies. Recently, however, deep
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learning (DL) has become a major paradigm in computa-
tional modeling and demonstrated utility in numerous
scientific domains and various forms of data analysis
[2,3]. As a result, DL is increasingly being utilized within
biomedical optics as a data‐driven approach to perform
image processing tasks, solve inverse problems for image
reconstruction, and provide automated interpretation of
downstream images. This trend is highlighted in Figure 1,
which summarizes the articles reviewed in this paper
stratified by publication year and image domain.

This review focuses on the use of DL in the design and
translation of novel biomedical optics systems. While
image formation is the main focus of this review, DL has
also been widely applied to the interpretation of down-
stream images, as summarized in other review articles
[4,5]. This review is organized as follows. First, a brief
introduction to DL is provided by answering a set of
questions related to the topic and defining key terms and
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concepts pertaining to the articles discussed throughout
this review. Next, recent original research in the following
eight optics‐related imaging domains is summarized: (i)
microscopy, (ii) fluorescence lifetime imaging, (iii) in vivo
microscopy, (iv) widefield endoscopy, (v) optical coherence
tomography, (vi) photoacoustic imaging, (vii) diffuse to-
mography, and (viii) functional optical brain imaging.
Within each domain, state‐of‐the‐art approaches which
can enable new functionality for optical systems are
highlighted. We then offer our perspectives on the chal-
lenges and opportunities across these eight imaging do-
mains. Finally, we provide a summary and outlook of
areas in which DL can contribute to future development
and clinical impact biomedical optics moving forward.

DL OVERVIEW

What is DL?

To define DL, it is helpful to start by defining machine
learning (ML), as the two are closely related in their
historical development and share many commonalities in
their practical application. ML is the study of algorithms
and statistical models which computer systems use to
progressively improve their performance on a specified
task [6]. To ensure the development of generalizable
models, ML is commonly broken in two phases: training
and testing. The purpose of the training phase is to ac-
tively update model parameters to make increasingly ac-
curate predictions on the data, whereas the purpose of
testing is to simulate a prospective evaluation of the
model on future data.
In this context, DL can be considered a subset of ML, as it

is one of many heuristics for development and optimization of
predictive, task‐specific models [7]. In practice, DL is pri-
marily distinguished from ML by the details of the under-
lying computational models and optimization techniques
utilized. Classical ML techniques rely on careful development
of task‐specific image analysis features, an approach com-
monly referred to as “feature engineering” (Fig. 2a). Such
approaches typically require extensive manual tuning and
therefore have limited generalizability. In contrast, DL ap-
plies an “end‐to‐end” data‐driven optimization (or “learning”)
of both feature representations and model predictions [2]
(Fig. 2b). This is achieved through training a type of general

and versatile computational model, termed deep neural net-
work (DNN).

DNNs are composed of multiple layers which are con-
nected through computational operations between layers,
including linear weights and nonlinear “activation” func-
tions. Thereby, each layer contains a unique feature rep-
resentation of the input data. By using several layers, the
model can account for both low‐level and high‐level rep-
resentations. In the case of images, low‐level representa-
tions could be textures and edges of the objects, whereas
higher level representations would be object‐like compo-
sitions of those features. The joint optimization of both
feature representation at multiple levels of abstraction
and predictive model parameters is what makes DNNs so
powerful.

How is DL Implemented?

The majority of the existing DL models in biomedical
optics are implemented using the supervised learning
strategy. At a high‐level, there are three primary compo-
nents to implement a supervised DL model: (i) labeled
data, (ii) model architecture, and (iii) optimization
strategy. Labeled data consist of the raw data inputs as
well as the desired model output. Large amounts of la-
beled data are often needed for effective model opti-
mization. This requirement is currently one of the main
challenges for utilizing DL on small‐scale biomedical data
sets, although strategies to overcome this are an active
topic in the literature, such as unsupervised [8], self‐
supervised [9], and semi‐supervised learning [10]. For a
typical end‐to‐end DL model, model architecture defines
the hypothesis class and how hierarchical information
flows between each layer of the DNN. The selection of a
DNN architecture depends on the desired task and is
often determined empirically through comparison of var-
ious state‐of‐the‐art architectures. Three of the most
widely used DNN architectures in current biomedical
optics literature are illustrated in Figure 3.

The encoder‐decoder network [11] shown in
Figure 3a aims to establish a mapping between the input
and output images using a nearly symmetrically structure
with a contracting “encoder” path and an expanding “de-
coder” path. The encoder consists of several convolutional
blocks, each followed by a down‐sampling layer for re-
ducing the spatial dimension. Each convolutional block
consists of several convolutional layers (Conv2D) that
stacks the processed features along the last dimension,

Fig. 1. Number of reviewed research papers which utilize DL in
biomedical optics stratified by year and imaging domain.
DL, deep learning.

Fig. 2. (a) Classical machine learning uses engineered features
and a model. (b) Deep learning uses learned features and
predictors in an “end‐to‐end” deep neural network.
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among which each layer is followed by a nonlinear acti-
vation function, for example, the Rectified Linear Unit
(ReLU). The intermediate output from the encoder has a
small spatial dimension but encodes rich information
along the last dimension. These low‐resolution “activation
maps” go through the decoder, which consists of several
additional convolutional blocks, each connected by a up-
sampling convolutional (Up‐Conv) layer for increasing the
spatial dimension. The output of the network typically
has the same dimension as the input image.
The U‐Net [12] architecture shown in Figure 3b can be

thought of as an extension to the encoder‐decoder net-
work. It introduces additional “skip connections” between
the encoder and decoder paths so that information across
different spatial scales can be efficiently tunneled through
the network, which has shown to be particularly effective
to preserve high‐resolution spatial information [12].
The generative adversarial network (GAN) [13] shown

in Figure 3c is a general framework that involves adver-
sarially training a pair of networks, including the “gen-
erator” and “discriminator.” The basic idea is to train the
generator to make high‐quality image predictions that are
indistinguishable from the real images of the same class
(e.g., H&E stained lung tissue slices).
To do so, the discriminator is trained to classify that the

generator's output is fake, while the generator is trained
to fool the discriminator. Such alternating training steps
iterate until a convergence is met when the discriminator

can hardly distinguish if the images produced from the
generator are fake or real. When applying to biomedical
optics techniques, the generator is often implemented by
the U‐Net. The discriminator is often implemented using
an image classification network. The input image is first
processed by several convolutional blocks and down-
sampling layers to extract high‐level two‐dimensional
(2D) features. These 2D features are then “flattened” to a
1D vector, which is then processed by several fully con-
nected layers to perform additional feature synthesis and
make the final classification.

Once labeled data and model architecture have been
determined, optimization of model parameters can be
undertaken. Optimization strategy includes two aspects:
(i) cost function, and (ii) training algorithm. Definition of
a cost function (a.k.a. objective function, error, or loss
function) is needed to assess the accuracy of model pre-
dictions relative to the desired output and provide guid-
ance to adjust model parameters. The training algorithm
iteratively updates the model parameters to improve
model accuracy. This training process is generally ach-
ieved by solving an optimization problem, using variants
of the gradient descent algorithm, for example, stochastic
gradient descent and Adam [14]. The optimizer utilizes
the gradient of the cost function to update each layer of
the DNN through the principle of “error backpropagation”
[15]. Given labeled data, a model architecture, and the
optimization guides the model parameters toward a local
minimum of the cost function, thereby optimizing model
performance.

With the recent success of DL, several software frame-
works have been developed to enable easier creation and
optimization of DNNs. Many of the major technology
companies have been active in this area. Two of the front‐
runners are TensorFlow and PyTorch, which are open‐
source frameworks published and maintained by Google
and Facebook, respectively [16,17]. Both frameworks en-
able easy construction of custom DNN models, with effi-
cient parallelization of DNN optimization over high‐
performance graphics computing units (GPUs). These
frameworks have enabled non‐experts to train and deploy
DNNs and have played a large role in the spread of DL
research into many new applications, including the field
of biomedical optics.

What is DL Used for in Biomedical Optics?

There are two predominant tasks for which DL has
been utilized in biomedical optics: (i) image formation and
(ii) image interpretation. Both are important applications;
however, image formation is a more central focus of bio-
medical optics researchers and consequently is the focus
of this review.

With regards to image formation, DL has proven very
useful for effectively approximating the inverse function
of an imaging model in order to improve the quality of
image reconstructions. Classical reconstruction techni-
ques are built on physical models with explicit analytical
formulations. To efficiently compute the inverse of these
analytical models, approximations are often needed to

Fig. 3. Three of the most commonly‐used DNN architectures in
biomedical optics: (a) Encoder‐decoder, (b) U‐Net, and (c) GAN.
GAN, generative adversarial network.
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simplify the problem, for example, linearization. Instead,
DL methods have shown to be very effective to directly
“learn” an inverse model, in the form of a DNN, based on
the training input and output pairs. This in practice has
opened up novel opportunities to perform image formation
that would otherwise be difficult to formulate an ana-
lytical model. In addition, the directly learned DL inverse
model can often better approximate the inverse function,
which in turn leads to improved image quality as shown
in several imaging domains in this review.
Secondly, DL has been widely applied for modeling image

priors for solving the inverse problems across multiple
imaging domains. Most image reconstruction problems are
inherently ill‐posed in that the reconstructed useful image
signal can be overwhelmed by noise if a direct inversion is
implemented. Classical image reconstruction techniques rely
on regularization using parametric priors for incorporating
features of the expected image. Although being widely used,
such models severely limit the type of features that can be
effectively modeled, which in turn limit the reconstruction
quality. DL‐based reconstruction bypasses this limitation and
does not rely on explicit parameterization of image features,
but instead represents priors in the form of a DNN which is
optimized (or “learned”) from a large data set that is of the
same type of the object of interest (e.g., endoscopic images of
esophagus). By doing so, DL enables better quality re-
constructions.
Beyond achieving higher quality reconstructions, there are

other practical benefits of DNNs in image formation. Clas-
sical inversion algorithms typically require an iterative
process that can take minutes to hours to compute. Fur-
thermore, they have stringent sampling requirements, which
if lessened, make the inversion severely ill‐posed. Due to
more robust “learned" priors, DL‐based techniques can ac-
commodate highly incomplete or undersampled inputs while
still providing high‐quality reconstructions. Additionally, al-
though DNNs typically require large data sets for training,
the resulting models are capable of producing results in real
time with a GPU. These combined capabilities allow
DL‐based techniques to bypass physical trade‐offs (e.g., ac-
quisition speed and imaging quality) and enable novel capa-
bilities beyond existing solutions.
By leveraging these unique capabilities of DL methods,

innovative techniques have been broadly reported across
many imaging domains in biomedical optics. Examples
include improving imaging performance, enabling new
imaging functionalities, extracting quantitative micro-
scopic information, and discovering new biomarkers.
These and other technical developments have the poten-
tial to significantly reduce system complexity and cost,
and may ultimately improve the quality, affordability, and
accessibility of biomedical imaging in health care.

DL APPLICATIONS IN BIOMEDICAL OPTICS

Microscopy

Overview. Microscopy is broadly used in biomedical
and clinical applications to capture cellular and tissue
structures based on intrinsic (e.g., scattering, phase, and

autofluorescence) or exogenous contrast (e.g., stains and
fluorescent labels). Fundamental challenges exist in all
forms of microscopy because of the limited information
that can be extracted from the instrument. Broadly, the
limitations can be categorized based on two main sources
of origin. The first class is due to the physical tradeoffs
between multiple competing performance parameters,
such as SNR, acquisition speed, spatial resolution, FOV,
and DOF. The second class is from the intrinsic sensitivity
and specificity of different contrast mechanisms.
DL‐augmented microscopy is a fast‐growing area that aims
to overcome various aspects of conventional limitations by
synergistically combining novel instrumentation and
DL‐based computational enhancement. This section focuses
on DL strategies for bypassing the physical tradeoffs
and augmenting the contrast in different microscopy
modalities.

Overcoming physical tradeoffs. An ideal
microscopy technique often needs to satisfy several
requirements, such as high resolution in order to resolve
the small features in the sample, low light exposure to
minimize photo‐damage, and a wide FOV in order to
capture information from a large portion of the sample.
Traditional microscopy is fundamentally limited by the
intrinsic tradeoffs between various competing imaging
attributes. For example, a short light exposure reduces
the SNR; a high spatial resolution requires a high‐
magnification objective lens that provides a small FOV
and shallow DOF. This section summarizes recent
achievements in leveraging DL strategies to overcome
various physical tradeoffs and expand the imaging
capabilities.
Denoising: Enhancing microscopy images by
DL‐based denoising has been exploited to overcome the
tradeoffs between light exposure, SNR, and imaging
speed, which in turn alleviates photo‐bleaching and
photo‐toxicity. The general strategy is to train a su-
pervised network that takes a noisy image as the input
and produces the SNR‐enhanced image output. Weigert
et al. [18] demonstrated a practical training strategy of a
U‐Net on experimental microscopy data that involves
taking paired images with low and high light exposures as
the noisy input and high‐SNR output of the network
[19–23] (Fig. 4a). This work showed that the DNN can
restore the same high‐SNR images with 60‐fold fewer
photons used during the acquisition. Similar strategies
have been applied to several microscopy modalities, in-
cluding widefield, confocal, light‐sheet [18], structured
illumination [24], and multi‐photon microscopy [25].
Image reconstruction: Beyond denoising, the
imaging capabilities of several microscopy techniques can
be much expanded by performing image reconstruction.
To perform reconstruction by DL, the common framework
is to train a DNN, such as the U‐Net and GAN, that takes
the raw measurements as the input and the reconstructed
image as the output. With this DL framework, three
major benefits have been demonstrated. First, Wang et al.
showed that GAN‐based super‐resolution reconstruction
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allows recovering high‐resolution information from
low‐resolution measurements, which in turn provides an
enlarged FOV and an extended DOF [19] (Fig. 4b). For
widefield imaging, [19] demonstrated super‐resolution
reconstruction using input images from a ×10/0.4‐NA
objective lens and producing images matching a ×20/0.75‐
NA objective lens. In a cross‐modality confocal‐to‐STED
microscopy transformation case, [19] showed resolution
improvement from 290 to 110 nm. Similar results have
also been reported in label‐free microscopy modalities,
including brightfield [26], holography [27], and quantita-
tive phase imaging [20] (Fig. 4c).
Second, DL‐based 3D reconstruction technique allows

drastically extending the imaging depth from a single‐shot
and thus bypasses the need for physical focusing. In [21],
Wu et al. demonstrated ×20 DOF extension in widefield

fluorescence microscopy using a conditional GAN (Fig. 4d).
Recent work on DL‐based extended DOF has also
shown promising results on enabling rapid slide‐free
histology [28].

Third, DL significantly improves both the imaging ac-
quisition and reconstruction speeds and reduces the
number of measurements for microscopy modalities that
intrinsically require multiple measurements for the
image formation, as shown in quantitative phase micro-
scopy [20,29,30] (Fig. 4c), single molecule localization
microscopy [31–33], and structured illumination micro-
scopy [24]. For example, in [20], a 97% data reduction as
compared to the conventional sequential acquisition
scheme was achieved for gigapixel‐scale phase re-
construction based on a multiplexed acquisition scheme
using a GAN.

Fig. 4. DL overcomes physical tradeoffs and augments microscopy contrast. (a) CARE network
achieves higher SNR with reduced light exposure (with permission from the authors [18]). (b)
Cross‐modality super‐resolution network reconstructs high‐resolution images across a wide FOV
[19] (with permission from the authors). (c) DL enables wide‐FOV high‐resolution phase
reconstruction with reduced measurements (adapted from [20]). (d) Deep‐Z network enables
digital 3D refocusing from a single measurement [21] (with permission from the authors). (e)
Virtual staining GAN transforms autofluorescence images of unstained tissue sections to virtual
H&E staining [22] (with permission from the authors) (f) DL enables predicting fluorescent labels
from label‐free images [23] (Reprinted from Christiansen et al. [23], Copyright (2020), with
permission from Elsevier). 3D, three dimensional; DL, deep learning; FOV, field of view; GAN,
generative adversarial network; SNR, signal‐to‐noise ratio.
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Augmenting contrasts. The image contrast used in
different microscopy modalities can be broadly
categorized into endogenous and exogenous. For
example, label‐free microscopy captures endogenous
scattering and phase contrast, and is ideal for imaging
biological samples in their natural states, but suffers from
lack of molecular specificity. Specificity is often achieved
by staining with absorbing or fluorescent labels. However,
applications of exogenous labeling are limited by the
physical staining/labeling process and potential
perturbation to the natural biological environment.
Recent advances in DL‐augmented microscopy have the
potential to achieve the best of both label‐free and labeled
microscopy. This section summarizes two most widely
used frameworks for augmenting microscopy contrast
with DL.

Virtual staining/labeling: The main idea of vir-
tual staining/labeling is to digitally transform the cap-
tured label‐free contrast to the target stains/labels. DL
has been shown to be particularly effective to perform this
“cross‐modality image transformation” task. By adapting
this idea to different microscopy contrasts, two emerging
applications have been demonstrated. First, virtual his-
tological staining has been demonstrated for transforming
a label‐free image to the brightfield image of
the histologically‐stained sample (Fig. 4e). The label‐
free input utilized for this task include autofluorescence
[22,34], phase [35,36], multi‐photon and fluorescence
lifetime [37]. The histological stains include H&E, Mas-
son's Trichrome and Jones’ stain. Notably, the quality of
virtual staining on tissue sections from multiple human
organs of different stain types was assessed by board‐
certified pathologists to show superior performance [22].
A recent cross‐sectional study has been carried out for
clinical evaluation of unlabeled prostate core biopsy im-
ages that have been virtually stained [38]. The main
benefits of the virtual staining approach include saving
time and cost [22], as well as facilitating multiplexed
staining [34]. Interested readers can refer to a recent re-
view on histopathology using virtual staining [39].
Second, digital fluorescence labeling has been demon-

strated for transforming label‐free contrast to
fluorescence labels [23,40–43] (Fig. 4f). In the first dem-
onstration [23], Christiansen et al. performed 2D digital
labeling using transmission brightfield or phase contrast
images to identify cell nuclei (accuracy quantified by
Pearson correlation coefficient PCC= 0.87–0.93), cell
death (PCC= 0.85), and to distinguish neuron from as-
trocytes and immature dividing cells (PCC= 0.84). A main
benefit of digital fluorescence labeling is digital multi-
plexing of multiple subcellular fluorescence labels, which
is particularly appealing to kinetic live cell imaging. This
is highlighted in [40], 3D multiplexed digital labeling
using transmission brightfield or phase contrast images
on multiple subcellular components are demonstrated,
including nucleoli (PCC~0.9), nuclear envelope, micro-
tubules, actin filaments (PCC~0.8), mitochondria, cell
membrane, Endoplasmic reticulum, DNA+ (PCC~0.7),

DNA (PCC~0.6), Actomyosin bundles, tight junctions
(PCC~0.5), Golgi apparatus (PCC~0.2), and Desmosomes
(PCC~0.1). Recent advances further exploit other label‐
free contrasts, including polarization [41], quantitative
phase map [43], and reflectance phase‐contrast micro-
scopy [42]. Beyond predicting fluorescence labels, recent
advances further demonstrate multiplexed single‐cell
profiling using the digitally predicted labels [42].

In both virtual histopathological staining and digital
fluorescence labeling, the U‐Net forms the basic archi-
tecture to perform the image transformation. GAN has
also been incorporated to improve the perform-
ance [22,38].

Classification: Instead of performing pixel‐wise vir-
tual stain/label predictions, DL is also very effective in
holistically capturing complex “hidden” image features for
classification. This has found broad applications in aug-
menting the label‐free measurements and provide im-
proved specificity and classify disease progression [44,45]
and cancer screening [46–48], as well as detect cell types
[49,50], cell states [44,51], stem cell lineage [52–54], and
drug response [55]. For example, in [44], Eulenberg et al.
demonstrated a classification accuracy of 98.73% for the
G1/S/G2 phase, which provided 6× improvement in error
rate as compared to the previous state‐of‐the‐art method
based on classical ML techniques.

Opportunities and challenges. By overcoming the
physical tradeoffs in traditional systems, DL‐augmented
microscopy achieves unique combinations of imaging
attributes that are previously not possible. This may
create new opportunities for diagnosis and screening. By
augmenting the contrast using virtual histological
staining techniques, DL can open up unprecedented
capabilities in label‐free and slide‐free digital pathology.
This can significantly simplify the physical process and
speed up the diagnosis. By further advancing the digital
fluorescence labeling techniques, it can enable high‐
throughput and highly multiplexed single‐cell profiling
and cytometry. Beyond clinical diagnoses, this may find
applications in drug screening and phenotyping.

In addition, several emerging DL techniques can fur-
ther enhance the capabilities of microscopy systems.
First, DL can be applied to optimize the hardware pa-
rameters used in microscopy experiments. In quantitative
phase microscopy, DL was applied to optimized the illu-
mination patterns to reduce the data requirement [30,56].
In single molecule localization microscopy, DL was used to
optimize the point spread functions to enhance the local-
ization accuracy [33,57]. DL has also been used to opti-
mize the illumination power [58] and focus posi-
tions [59–61].

Second, new DL frameworks are emerging to sig-
nificantly reduce the labeled data requirements in
training, which is particularly useful in biomedical mi-
croscopy since acquiring a large‐scale labeled training
data set is often impractical. For example, a novel
denoising approach, known as Noise2Noise [62], has been
developed that can be trained using only independent
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pairs of noisy images, and bypasses the need for ground‐
truth clean images. Following this work, self‐supervised
denoising DL approaches have been advanced to further
alleviate the training data requirement. Techniques, such
as Noise2Void, Noise2Self, and their variants, can be di-
rectly trained on noisy data set without the need for
paired noisy images [63–65]. In addition, semi‐supervised
and unsupervised DL approaches have also been devel-
oped to reduce or completely remove the need for labeled
training data during training, which have been demon-
strated for vessel segmentation [66,67]. Lastly, physics‐
embedded DL opens up a new avenue for reducing
training requirements by incorporating the physical
model of the microscopy technique [68,69].
Finally, uncertainty quantification techniques address

the need for assessing the reliability of the DL model by
quantifying the confidence of the predictions, and has
recently been applied in quantitative phase re-
construction [20].

Fluorescence Lifetime Imaging (FLI)

Overview. Fluorescence imaging has become a central
tool in biomedical studies with high sensitivity to observe
endogenous molecules [70,71] and monitor important
biomarkers [72]. Increasingly, fluorescence imaging is
not limited to intensity‐based techniques but can extract
additional information by measuring fluorophore
lifetimes [73–75]. FLI has become an established
technique for monitoring cellular micro‐environment via
analysis of various intracellular parameters [76], such as
metabolic state [77,78], reactive oxygen species [79], and/
or intracellular pH [80]. FLI is also a powerful technique
for studying molecular interactions inside living samples,
via FÃűrster Resonance Energy Transfer (FRET) [81],
enabling applications such as quantifying protein‐protein
interactions [82], monitoring biosensor activity [83], and
ligand‐receptor engagement in vivo [84]. However, FLI is
not a direct imaging technique. To quantify lifetime or
lifetime‐derived parameters, an inverse solver is required
for quantification and/or interpretation.
To date, image formation is the main utility of DL in

FLI. Contributions include reconstructing quantitative
lifetime image from raw FLI measurements, enabling
enhanced multiplexed studies by leveraging both spectral
and lifetime contrast simultaneously, and facilitating
improved instrumentation with compressive measure-
ment strategies.

Lifetime quantification, representation, and
retrieval. Conventionally, lifetime quantification is
obtained at each pixel via model‐based inverse‐solvers, such
as least‐square fitting and maximum‐likelihood estimation
[85], or the fit‐free phasor method [86,87]. The former is time‐
consuming, inherently biased by user‐dependent a priori
settings, and requires operator expertise. The phasor method
is the most widely‐accepted alternative for lifetime
representation [87]. However, accurate quantification using
the phasor method requires careful calibration, and when
considering tissues/turbid‐media in FLI microscopy (FLIM)

applications, additional corrections are needed [87,88].
Therefore, it has largely remained qualitative in use.

Wu et al. [89] demonstrated a multilayer perceptron (MLP)
for lifetime retrieval for ultrafast bi‐exponential FLIM. The
technique exhibited an 180‐fold faster speed then conven-
tional techniques, yet it was unable to recover the true
lifetime‐based values in many cases due to ambiguities
caused by noise. Smith et al. [90] developed an improved
3D‐CNN, FLI‐Net, that can retrieve spatially independent bi‐
exponential lifetime parameter maps directly from the 3D
(x y t, , ) FLI data. By training with a model‐based approach
including representative noise and instrument response
functions, FLI‐Net was validated across a variety of biological
applications. These include quantification of metabolic and
FRET FLIM, as well as preclinical lifetime‐based studies
across the visible and near‐infrared (NIR) spectra. Further,
the approach was generalized across two data acquisition
technologies—Time‐correlated Single Photon Counting
(TCSPC) and Intensified Gated CCDs (ICCD). FLI‐Net has
two advantages. First, it outperformed classical approaches
in the presence of low photon counts, which is a common
limitation in biological applications. Second, FLI‐Net can
output lifetime‐based whole‐body maps at 80 milliseconds in
widefield pre‐clinical studies, which highlights the potential
of DLmethods for fast and accurate lifetime‐based studies. In
combination with DL in silico training routines that can be
crafted for many applications and technologies, DL is ex-
pected to contribute to the dissemination and translation of
FLI methods as well as to impact the design and im-
plementation of future‐generation FLI instruments. An ex-
ample FLI‐Net output for metabolic FLI is shown in Figure 5.

Emerging FLI applications using DL. The
technologies used in FLI have not fundamentally shifted
over the last two decades. One bottleneck for translation is a
lack of sensitive, widefield NIR detectors. Advances in
computational optics have sparked development of new
approaches using structured light [91], such as single‐pixel
methods [92]. These methods are useful when widefield
detectors are lacking, such as in applications with low photon
budget and when higher dimensional data are sought [92]
(e.g., hyperspectral imaging [93]). However, these
computational methods are based on more complex inverse
models that require user expertise and input.

Yao et al. [94] developed a CNN, NetFLICS, capable of
retrieving both intensity and lifetime images from single‐
pixel compressed sensing‐based time‐resolved input.
NetFLICS generated superior quantitative results at low
photon count levels, while being four orders of magnitude
faster than existing approaches. Ochoa‐Mendoza et al.
[95] further developed the approach to increase its com-
pression ratio to 99% and the reconstruction resolution to
128 × 128 pixels. This dramatic improvement in com-
pression ratio enables significantly faster imaging proto-
cols and demonstrates how DL can impact in-
strumentation design to improve clinical utility and
workflow [96].

Recent developments have made hyperspectral FLI
imaging possible across microscopic [97] and macroscopic
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settings [98]. Traditionally, combining spectral and life-
time contrast analytically is performed independently or
sequentially using spectral decomposition and/or iterative
fitting [99]. Smith et al. [100] proposed a DNN,
UNMIX‐ME, to unmix multiple fluorophore species si-
multaneously for both spectral and temporal information.
UNMIX‐ME takes a 4D voxel ( λx y t, , , ) as the input and
outputs spatial (x y, ) maps of the relative contributions of
distinct fluorophore species. UNMIX‐ME demonstrated
higher performance during tri‐ and quadri‐abundance
coefficient retrieval. This method is expected to find
utility in applications such as autofluorescence imaging in
which unmixing of metabolic and structural biomarkers is
challenging.
Although FLI has shown promise for deep tissue

imaging in clinical scenarios, FLI information is affected
by tissue optical properties. Nonetheless, there are sev-
eral applications that would benefit from optical property‐
corrected FLI without solving the full 3D inverse problem.
For optical guided surgery, Smith et al. [101] proposed a
DNN that outputs 2D maps of the optical properties,
lifetime quantification, and the depth of fluorescence in-
clusion (topography). The DNN was trained using a
model‐based approach in which a data simulation

workflow incorporated “Monte Carlo eXtreme” [102] to
account for light propagation through turbid media. The
method was demonstrated experimentally, with real‐time
applicability over large FOVs. Both widefield time‐
resolved fluorescence imaging and spatial frequency
domain imaging (SFDI) in its single snapshot im-
plementation were performed with fast acquisition [91]
and processing speeds [103]. Hence, their combination
with DL‐based image processing provides a possible fu-
ture foundation for real‐time intraoperative use.

While recent advances in FLI‐based classification and
segmentation are limited to using classical ML techniques
[104–106], Sagar et al. [107] used MLPs paired with bi‐
exponential fitting for label‐free detection of microglia.
However, DL approaches often outperform such “shallow
learning” classifiers. Although reports using DL for clas-
sification based on FLI data are currently absent from the
literature, it is expected that DL will play a critical role in
enhancing FLI classification and semantic segmentation
tasks in the near future.

In Vivo Microscopy (IVM)

Overview. IVM techniques enable real‐time
assessment of intact tissue at magnifications similar to
that of conventional histopathology [108]. As high‐
resolution assessment of intact tissue is desirable for
many biomedical imaging applications, a number of
optical techniques and systems have been developed
which have trade‐offs in FOV, spatial resolution,
achievable sampling rates, and practical feasibility for
clinical deployment [108]. However, a commonality of IVM
systems used for clinical imaging is the need for image
analysis strategies to support intraoperative visualization
and automated diagnostic assessment of the high‐
resolution image data. Currently, three of the major
IVM techniques for which DL is being utilized are
optical coherence tomography (OCT) [109], confocal laser
endomicroscopy (CLE, Fig. 6) [110], and reflectance
confocal microscopy (RCM) [111]. This section focuses on
DL approaches for CLE and RCM. More specifically,
endoscopic imaging using probe‐based CLE (pCLE) and
dermal imaging for RCM. OCT is discussed in a
subsequent section.

Automated diagnosis. Automated diagnostic
classification has been the earliest and most frequent
application of DL within IVM. Most commonly,
histopathology analysis of imaged specimens provides a
ground truth categorization for assessing diagnostic
accuracy. The limited size of pCLE and RCM data sets
and logistical challenges in precisely correlating them
with histopathology remain two ongoing challenges for
training robust classifiers. To address these challenges, a
variety of strategies have been applied which range from
simple classification schemes (benign vs. malignant)
using pre‐trained CNNs [113] to more complicated
tasks, such as cross‐domain feature learning and multi‐
scale encoder‐decoder networks [115,116]. The following
section contrasts recent reports and methods utilizing DL

Fig. 5. Example of quantitative FLI metabolic imaging as
reported by NADH tm for a breast cancer cell line (AU565) as
obtained (a) with SPCImage and (b) FLI‐Net. (c) Linear
regression with corresponding 95% confidence band (gray
shading) of averaged NADH Tm values from 4 cell line data
(adapted from [90]). FLI, fluorescence lifetime imaging.
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for diagnostic image analysis of pCLE and RCM image
data sets.

CNNs and transfer learning approaches:
Early reports on DL‐based image classification for CLE
and RCM have demonstrated that transfer learning using
pre‐trained CNNs can outperform conventional image
analysis approaches, especially when data is limited as is
often the case for CLE and RCM [113,117–119].
Aubreville et al. published an early and impactful study

comparing the performance of two CNN‐based approaches
to a textural feature‐based classifier (random forest) on
pCLE video sequences acquired during surgical resection
of oral squamous carcinoma (Fig. 6b) [113]. Of their two
CNN‐based approaches, one was a LeNet‐5 architecture
and was trained to classify sub‐image patches whereas
the other utilized transfer learning of a pre‐trained CNN
(Fig. 6c) for whole image classification. Using leave‐one‐
out cross validation on 7894 frames from 12 patients, the
two CNN‐based approaches both outperformed the tex-
tural classifier.

Transfer learning is one strategy to overcome limited
data set sizes, which remains a common challenge for
CLE and RCM. As larger CLE and RCM data sets are
obtainable in the future, transfer learning is unlikely
to be an optimal strategy for image classification;
however, it can remain a useful benchmark for the
difficulty of image classification tasks on novel, small‐
scale data sets moving forward. The subsequent sec-
tions introduce alternatives to transfer learning which
utilize video data as well as cross‐domain learning.

Recurrent convolutional approaches: CLE
and RCM are typically used in video recording while
the optical probe is physically or optically scanned to
obtain images over a larger tissue area or at varying
depths. Some reports have utilized recurrent convolu-
tional networks to account for spatial and/or temporal
context of image sequences [120–122]. The additional
spatial/temporal modeling provided by recurrent net-
works is one promising approach to leverage video
data. [120–122].

a b

c

d

e

f

Fig. 6. DL approaches to support real‐time, automated diagnostic assessment of tissues with
confocal laser endomicroscopy. (a) Graphical rendering of two confocal laser endomicroscopy
probes (left: Cellvizio, right: Pentax) (adapted from [112]). (b) Example CLE images obtained from
four different regions of the oral cavity (adapted from [113]) (c) Fine‐tuning of CNNs pre‐trained
using ImageNet is utilized in the majority of CLE papers reported since 2017 (adapted from
[113]). (d) Super‐resolution networks for probe‐based CLE images incorporate novel layers to
better account for the sparse, irregular structure of the images (adapted from [114]). (e) Example
H&E stained histology images with corresponding CLE images. Adversarial training of GANs to
transfer between these two modalities has been successful (adapted from [115]). (f) Transfer
recurrent feature learning utilizes adversarially trained discriminators in conjunction with an
LSTM for state‐of‐the‐art video classification performance (adapted from [115]). CLE, confocal
laser endomicroscopy; DL, deep learning; GAN, generative adversarial. network.
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Cross‐domain learning: A novel approach,
termed “transfer recurrent feature learning,” was devel-
oped by Gu et al. which leveraged cross‐domain feature
learning for classification of pCLE videos obtained from
45 breast tissue specimens [115]. Although this method
relied on data acquired ex vivo, the data itself is not
qualitatively different from other pCLE data sets and still
provides a proof‐of‐principle. Their model utilized a cycle‐
consistent GAN (CycleGAN) to first learn feature repre-
sentations between H&E microscopy and pCLE images
and to identify visually similar images (Fig. 6e). The op-
timized discriminator from the CycleGAN is then utilized
in conjunction with a recurrent neural network to classify
video sequences (Fig. 6f). The method outperformed other
DL methods and achieved 84% accuracy in classifying
normal, benign, and malignant tissues.
Multiscale segmentation: Kose et al. [116] de-
veloped a novel segmentation architecture, “multiscale
encoder‐decoder network" (MED‐Net), which out-
performed other state‐of‐the‐art network architectures for
RCM mosaic segmentation. In addition to improving ac-
curacy, MED‐Net produced more globally consistent, less
fragmented pixel‐level classifications. The architecture is
composed of multiple, nested encoder‐decoder networks
and was inspired by how pathologists often examine im-
ages at multiple scales to holistically inform their image
interpretation.
Image quality assessment: A remaining limi-
tation of many studies was some level of manual or semi‐
automated pre‐processing of pCLE and RCM images/
videos to exclude low‐quality and/or non‐diagnostic image
data. Building on the aforementioned reports for diag-
nostic classification, additional work utilized similar
techniques for automated image quality assessment using
transfer learning [123,124] as well as MED‐Net [125].

Super‐resolution. Several IVM techniques, including
pCLE, utilize flexible fiber‐bundles as contact probes to
illuminate and collect light from localized tissue areas
[126]. Such probes are needed for minimally invasive
endoscopic procedures and can be guided manually or via
robotics. The FOVof fiber‐optic probes is typically<1 mm2

and lateral resolution is limited by the inter‐core spacing
of individual optical fibers, which introduce a periodic
image artifact (“honeycomb patterns”) from the individual
fibers.
Shao et al. [127] developed a novel super‐resolution

approach which outperformed maximum a posteriori
(MAP) estimation using a two‐stage CNN model which
first estimates the motion of the probe and then re-
constructs a super‐resolved image using the aligned video
sequence. The training data was acquired using a dual
camera system, one with and one without a fiber‐bundle
in the optical setup, to obtain paired data.
Others have taken a more computational approach to

pCLE super‐resolution by using synthetic data sets. For
example, Ravì et al. [128] demonstrated super‐resolution
of pCLE images using unpaired image data via a Cy-
cleGAN, and Szczotka et al. [114] introduced a novel

Nadaraya‐Watson layer to account for the irregular
sparse artifacts introduced by the fiber‐bundle (Fig. 6d).

Future directions. Beyond automatic diagnosis and
super‐resolution approaches in IVM, recent advances also
highlight ways in which DL can enable novel
instrumentation development and image reconstructions
to enable new functionalities for compact microscopy
systems. Such examples include multispectral
endomicroscopy [129], more robust mosaicking for FOV
expansion [130], and end‐to‐end image reconstruction
using disordered fiber‐optic probes [131,132]. We
anticipate that similarly to ex vivo microscopy, in the
coming years DL will be increasingly utilized to overcome
physical constraints, augment contrast mechanisms, and
enable new capabilities for IVM systems.

Widefield Endoscopy

Overview. The largest application of optics in medical
imaging, by U.S. market size, is widefield endoscopy
[133]. In this modality, tissue is typically imaged on the
>1 cm scale, over a large working distance range, with
epi‐illumination and video imaging via a camera.
Endoscopic and laparoscopic examinations are commonly
used for screening, diagnostic, preventative, and
emergency medicine. There has been extensive research
in applying various DL tools for analyzing conventional
endoscopy images for improving and automating image
interpretation [134–137]. This section instead reviews
recent DL research in image formation tasks in endoscopy,
including denoising, resolution enhancement, 3D scene
reconstruction, mapping of chromophore concentrations,
and hyperspectral imaging.

Denoising. A hallmark of endoscopic applications is
challenging geometrical constraints. Imaging through
small lumens such as the gastrointestinal tract or ‐
Ĳkeyholes‐İ for minimally‐invasive surgical applications
requires optical systems with compact footprints–often on
the order of 1‐cm diameter. These miniaturized optical
systems typically utilize small‐aperture cameras with
high pixel counts, wide FOVs, and even smaller
illumination channels. Consequently, managing the
photon budget is a significant challenge in endoscopy,
and there have been several recent efforts to apply DL to
aid in high‐quality imaging in these low‐light conditions.
A low‐light net (LLNET) with contrast‐enhancement and
denoising autoencoders has been introduced to adaptively
brighten images [138]. This study simulated low‐light
images by darkening and adding noise and found that
training on this data resulted in a learned model that
could enhance natural low‐light images. Other work has
applied a U‐Net for denoising on high‐speed endoscopic
images of the vocal folds, also by training on high‐quality
images that were darkened with added noise [139].
Brightness can also be increased via laser‐illumination,
which allows greater coupling efficiency than incoherent
sources, but results in laser speckle noise in the image
from coherent interference. Conditional GANs have been
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applied to predict speckle‐free images from laser‐
illumination endoscopy images by training on image
pairs acquired of the same tissue with both coherent
and incoherent illumination sources [140].

Improving image quality. In widefield endoscopy,
wet tissue is often imaged in a perpendicular orientation
to the optical axis, and the close positioning of the camera
and light sources leads to strong specular reflections that
mask underlying tissue features. GANs have been applied
to reduce these specular reflections [141]. In this case,
unpaired training data with and without specular
reflections were used in a CycleGAN architecture with
self‐regularization to enforce similarity between the input
specular and predicted specular‐free images. Other work
has found that specular reflection removal can be
achieved in a simultaneous localization and mapping
elastic fusion architecture enhanced by DL depth
estimation [142]. Lastly, Ali et al. [143] introduced a DL
framework that identifies a range of endoscopy artifacts
(multi‐class artifact detection), including specular
reflection, blurring, bubbles, saturation, poor contrast,
and miscellaneous artifacts using YOLOv3‐spp with
classes that were hand‐labeled on endoscopy images.
These artifacts were then removed and the image restored
using GANs.

Resolution enhancement. For capsule endoscopy
applications, where small detectors with low pixel
counts are required, DL tools have been applied for
super‐resolution with the goal of obtaining conventional
endoscopy‐like images from a capsule endoscope [144]. In
this study, a conditional GAN was implemented with
spatial attention blocks, using a loss function that
included contributions of pixel loss, content loss, and
texture loss. The intuition behind the incorporation of
spatial attention blocks is that this module guides the
network to prioritize the estimation of the suspicious and
diagnostically relevant regions. This study also performed
ablation studies and found that the content and texture
loss components are especially important for estimating
high‐spatial frequency patterns, which becomes more
important for larger upsampling ratios. With this
framework, the resolution of small bowel images was
increased by up to 12× with favorable quantitative
metrics as well as qualitative assessment by
gastroenterologists. Though this study demonstrated
that the resolution of gastrointestinal images could be
enhanced, it remains to be seen if preprocessing or
enhancing these images provides any benefit to
automated image analysis.

3D imaging andmapping. The 3D shape of the tissue
being imaged via endoscopy is useful for improving
navigation, lesion detection, and diagnosis, as well as
obtaining meaningful quality metrics for the effectiveness
of the procedure [145]. However, stereo and time‐of‐flight
solutions are challenging and expensive to implement in
an endoscopic form factor. Accordingly, there has been
significant work in estimating the 3D shape of an

endoscopic scene from monocular images using
conditional GANs trained with photo‐realistic synthetic
data [146,147]. Domain adaptation can be used to improve
the generalizability of these models, either by making the
synthetic data more realistic, or by making the real
images look more like the synthetic data that the depth‐
estimator is trained on [148]. Researchers have also
explored joint conditional random fields and CNNs in a
hybrid graphical model to achieve state‐of‐the‐art
monocular depth estimation [149]. A U‐Net style
architecture has been implemented for simultaneously
estimating depth, color, and oxygen saturation maps from
a fiber‐optic probe that sequentially acquired structured
light and hyperspectral images [150]. Lastly, DL tools
have been applied to improve simultaneous localization
and mapping (SLAM) tasks in endoscopic applications,
both by incorporating a monocular depth estimation prior
into a SLAM algorithm for dense mapping of the
gastrointestinal tract [142], and by developing a
recurrent neural network to predict depth and pose in a
SLAM pipeline [151].

Widefield spectroscopy. In addition to efforts to
reconstruct high‐quality color and 3D maps through an
endoscope, DL is also being applied to estimate bulk
tissue optical properties from wide FOV images. Optical
property mapping can be useful for meeting clinical needs
in wound monitoring, surgical guidance, minimally‐
invasive procedures, and endoscopy. A major challenge
to estimating optical properties in turbid media is
decoupling the effects of absorption, scattering, and the
scattering phase function, which all influence the
widefield image measured with flood illumination. SFDI
can provide additional inputs to facilitate solving this
inverse problem by measuring the attenuation of different
spatial frequencies [152]. Researchers have demonstrated
that this inverse model can be solved orders of magnitude
faster than conventional methods with a 6‐layer
Perceptron [153]. Others have shown that tissue optical
properties can be directly estimated from structured light
images or widefield illumination images using content‐
aware conditional GANs [154]. In this application, the
adversarial learning framework reduced errors in the
optical property predictions by more than half when
compared to the same network trained with an analytical
loss function. Intuitively, the discriminator learns a more
sophisticated and appropriate loss function in adversarial
learning, allowing for the generation of more‐realistic
optical property maps. Moreover, this study found that the
conditional GANs approach resulted in an increased
performance benefit when data is tested from tissue
types that were not spanned in the training set. The
authors hypothesize that this observation comes from the
discriminator preventing the generator from learning
from and overfitting to the context of the input image.
Optical properties can also be estimated more quickly
using a lighter‐weight twin U‐Net architecture with a
GPU‐optimized look‐up table [103]. Further,
chromophores can be computed in real‐time with
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reduced error compared with an intermediate optical
property inference by directly computing concentrations
from structured illumination at multiple wavelengths
using conditional GANs [155].
Going beyond conventional color imaging, researchers are

also processing 1D hyperspectral measurement through an
endoscope using shallow CNNs to classify pixels into the
correct color profiles, illustrating the potential to classify
tissue with complex absorbance spectra [156]. The spectral
resolution can be increased in dual‐modality color/hyper-
spectral systems from sparse spectral signals with CNNs
[150]. To enable quantitative spectroscopy measurements in
endoscopic imaging, it may be necessary to combine hyper-
spectral techniques with structured illumination and 3D
mapping [103,150,154,157].

Future directions. Future research in endoscopy and
DL will undoubtedly explore clinical applications.
Imaging system for guiding surgery are already
demonstrating clinical potential for ex‐vivo tissue
classification: a modified Inception‐v4 CNNs was
demonstrated to effectively classify squamous cell
carcinoma versus normal tissue at the cancer margin
from ex‐vivo hyperspectral images with 91 spectral bands
[158]. For in vivo applications, where generalizability may
be essential and training data may be limited, future
research in domain transfer [148] and semi‐supervised
learning [159] may become increasingly important.
Moreover, for clinical validation, these solutions must be
real‐time, easy‐to‐use, and robust, highlighting the need
for efficient architectures [103] and thoughtful user
interface design [160].

Optical Coherence Tomography (OCT)

Overview. OCT is a successful example of biophotonic
technological translation into medicine [161,162]. Since its
introduction in 1993, OCT has revolutionized the standard‐
of‐care in ophthalmology around the world, and continued
thriving in technical advances and other clinical applications,
such as dermatology, neurology, cardiology, oncology,
gastroenterology, gynecology, and urology [163–170].

Image segmentation. The most common use of OCT
is to quantify structural metrics via image segmentation,
such as retinal anatomical layer thickness, anatomical
structures, and pathological features. Conventional image
processing is challenging in the case of complex pathology
where tissue structural alteration can be complex and
may not be fully accounted for when designing a rigid
algorithm. Image segmentation is the earliest application
of DL explored in OCT applications. Several DNNs have
been reported for OCT segmentation in conjunction with
manual annotations (Fig. 7a), including U‐Net [171–173],
ResNet [174], and fully convolutional network (FCN)
[175,176]. Successful implementation of DNNs have been
broadly reported in different tissues beyond the eye
[177–179]. In all areas of applications, the DNN showed
superior segmentation accuracy over conventional
techniques. For example, Devalla et al. [174] quantified

the accuracy of the proposed DRUNET (Dilated‐Residual
U‐Net) for segmenting the retinal nerve fiber layer
(RNFL), retinal Layers, the retinal pigment epithelium
(RPE), and choroid on both healthy and glaucoma
subjects, and showed that the DRUNET consistently
outperformed alternative approaches on all the tissues
measured by dice coefficient, sensitivity, and specificity.
The errors of all the metrics between DRUNET and the
observers were within 10% and the patch‐based neural
network always provided greater than 10% error
irrespective of the observer chosen for validation. In
addition, the DRUNET segmentation further allowed
automatic extraction of six clinically relevant neural and
connective tissue structural parameters, including the
disc diameter, peripapillary RNFL thickness (p‐RNFLT),
peripapillary choroidal thickness (p‐CT), minimum rim
width (MRW), prelaminar thickness (PLT), and the
prelaminar depth (PLD).

Denoising and speckle removal. OCT images suffer
from speckle noise due to coherent light scattering, which
leads to image quality degradation. There exist other
sources of noise to further degrade the image quality
when the signal level is low. Denoising and despeckling
are important applications of DNNs, which are often
trained with the averaged reduced‐noise image as the
“ground truth” in a U‐Net and ResNet [182,183]. GAN has
also been applied and provided improved visual
perception than the DNNs trained with only the least‐
squares loss function [180] (Fig. 7b). For example, Dong
et al. [180] showed that the GAN‐based denoising network
outperformed state‐of‐the‐art image processing based
(e.g., BM3D and MSBTD) and a few other DNNs (e.g.,
SRResNet and SRGAN) in terms of contrast‐Řto‐Řnoise
ratio (CNR) and peak signal‐Řto‐Řnoise ratio (PSNR).

Clinical diagnosis and classification. In clinical
applications using DL, a large body of literature over the
past 3 years emerges particularly in ophthalmology. Most
of the studies use a CNN to extract image features for
diagnosis and classification [184]. A clear shift of
attention recently is to interpret the DNN, for example
using the attention map [181,185] (Fig. 7c). The purpose is
to reveal the most important structural features that the
DNN used for making the predictions. This addresses the
major concern from the clinicians on the “black‐box”
nature of DL. Another emerging effort is to improve the
generalization of a trained DNN to allow process images
from different devices, with different image qualities and
other possible variations. Transfer learning has been
reported to refine pre‐trained DNNs to other data set,
with much reduced training and data burdens [186,187].
Domain adaptation is another method to generalize the
DNN trained on images taken by one device to another
[188,189]. We expect more innovations for addressing the
generalization in clinical diagnosis and prediction.

Emerging applications. Beyond segmentation,
denoising, and diagnosis/classification, there are several
emerging DL applications for correlating the OCT
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measurements with vascular functions. OCT angiography
(OCTA) and Doppler OCT (DOCT) are two advanced
methods to measure label‐free microangiography and blood
flows. While normally requiring specific imaging protocols,
the raw OCT measurements contain structural features that
may be recognized by a CNN. Reports have shown that
angiographic image and blood flows can be predicted by mere
structural image input without specific OCTA or DOCT
protocols [190–192]. For example, Braaf et al. [190] showed
that DL enabled accurate quantification of blood flow from
OCT intensity time‐series measurements, and was robust to
vessel angle, hematocrit levels, and measurement SNR.

This is appealing for generating not only anatomical features,
but also functional readouts using the simplest OCT imaging
protocols by any regular OCT device (Fig. 8a). Recent work
also reports the use of a fully connected network and a CNN
to extract the spectroscopic information in OCT to quantify
the blood oxygen saturation (sO2) within microvasculature,
as an important measure of the perfusion function [193]
(Fig. 8b and c). The DL models in [193] demonstrated more
than 60% error reduction for predicting sO2 as compared
with the standard nonlinear least‐squares fitting method.
These advances present emerging directions of DL applied to
OCT to extract functional metrics beyond structures.

Fig. 7. (a) Example automatic retinal layer segmentation using DL compared to manual
segmentation (reprinted from [174]). (b) GAN for denoising OCT images (adapted from [180]). (c)
Attention map overlaid with retinal images indicated features that CNN used for diagnosing
normal versus age‐related macular degeneration (AMD) [181] (Reproduced from Rim et al. [181],
with permission from BMJ Publishing Group Ltd.). DL, deep learning; GAN, generative
adversarial network; OCT, optical coherence tomography.
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Photoacoustic Imaging and Sensing

Overview. Photoacoustic imaging relies on optical
transmission, followed by sensing of the resulting acoustic
response [194,195]. This response may then be used to
guide surgeries and interventions [196,197] (among other
possible uses [198]). In order to guide these surgeries and
interventions, image maps corresponding to structures of
high optical absorption must be formed, which is a rapidly
increasing area of interest for the application of DL to
photoacoustic imaging and sensing. This section focuses
on many of the first reports of DL for photoacoustic source
localization, image formation, and artifact removal.
Techniques applied after an image has been formed
(e.g., segmentation, spectral unmixing, and quantitative

imaging) are also discussed, followed by a summary of
emerging applications based on these DL implementations.

Source localization. Localizing sources correctly and
removing confusing artifacts from raw sensor data (also
known as channel data) are two important precursors to
accurate image formation. Three key papers discuss the
possibility of using DL to improve source localization.
Reiter and Bell [199] introduced the concept of source
localization from photoacoustic channel data, relying on
training data derived from simulations based on the
physics of wave propagation. Allman et al. [200] built on
this initial success to differentiate true photoacoustic
sources from reflection artifacts based on wavefront shape

Fig. 8. (a) Examples of using DL to predict blood flow based on structural OCT image features
(reprinted from [190]). (b) Example of deep spectral learning for label‐free oximetry in visible
light OCT (reprinted from [193]). (c) The predicted blood oxygen saturation and the tandem
prediction uncertainty from rat retina in vivo in hypoxia, normoxia and hyperoxia (reprinted from
[193]). DL, deep learning; OCT, optical coherence tomography.
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appearances in raw channel data. Waves propagating
spherically outward from a photoacoustic source are
expected to have a unique shape based on distance from
the detector, while artifacts are not expected to preserve
this shape‐to‐depth relationship [200]. A CNN (VGG‐16)
was trained to demonstrate this concept, with initial
results shown in Figure 9. Johnstonbaugh et al. [201]
expanded this concept by developing an encoder‐decoder
CNN with custom modules to accurately identify the
origin of photoacoustic wavefronts inside an optically
scattering deep‐tissue medium. In the latter two papers
[200,201], images were created from the accurate
localization of photoacoustic sources.

Image formation. Beyond source localization, DL
may also be used to form photoacoustic images directly
from raw channel data with real‐time speed [202,203].
This section summarizes the application of DL to four
technical challenges surrounding image formation: (i)
challenges surrounding the limited view of transducer
arrays [204–206] (in direct comparison to what is
considered the “full view” provided by ring arrays), (ii)
sparse sampling of photoacoustic channel data
[205,207–209], (iii) accurately estimating and
compensating for the fluence differences surrounding a
photoacoustic target of interest [210], and (iv) addressing
the traditional limited bandwidth issues associated with
array detectors [211].
Limited view: Surgical applications often preclude
the ability to completely surround a structure of interest.

Historically, ring arrays were introduced for small animal
imaging [212]. While these ring array geometries can also
be used for in vivo breast cancer detection [213] or os-
teoarthritis detection in human finger joints [214], a full
ring geometry is often not practical for many surgical
applications [197]. The absence of full ring arrays often
leads to what is known as “limited view” artifacts, which
can appear as distortions of the true shape of circular
targets or loss in the appearance of the lines in vessel
targets.

DL has been implemented to address these artifacts
and restore our ability to interpret the true structure of
photoacoustic targets. For example, Hauptmann et al.
[204] considered backprojection followed by a learned
denoiser and a learned iterative reconstruction, con-
cluding that the learned iterative reconstruction approach
sufficiently balanced speed and image quality, as demon-
strated in Figure 10. To achieve this balance, a physical
model of wave propagation was incorporated during the
gradient of the data fit and an iterative algorithm con-
sisting of several CNNs was learned. The network was
demonstrated for a planar array geometry. Tong et al.
[205] learned a feature projection, inspired by the
AUTOMAP network [215], with the novelty of in-
corporating the photoacoustic forward model and uni-
versal backprojection model in the network design. The
network was demonstrated for a partial ring array.

Sparse sampling: In tandem with limited view
constraints, it is not always possible to sufficiently sample

Fig. 9. Example of point source detection as a precursor to photoacoustic image formation after
identifying true sources and removing reflection artifacts, modified from [200]. (©2018 IEEE.
Adapted, with permission, from Allman et al. [200]).
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an entire region of interest when designing photoacoustic
detectors, resulting in sparse sampling of photoacoustic
responses. This challenge may also be seen as an ex-
tension of limited view challenges, considering that some
of the desired viewing angles or spatial locations are
missing (i.e., limited) due to sparse sampling, which often
results in streak artifacts in photoacoustic images [216].
Therefore, networks that address limited view challenges
can simultaneously address sparse sampling challenges
[205,217].
Antholzer et al. [207] performed image reconstruction

to address sparse sampling with a CNN, modeling a fil-
tered backprojection algorithm [218] as a linear pre-
processing step (i.e., the first layer), followed by the U‐Net
architecture to remove undersampling artifacts (i.e., the
remaining layers). Guan et al. [208] proposed pixel‐wise
DL (Pixel‐DL) for limited‐view and sparse PAT image
reconstruction. The raw sensor data was first interpolated
to window information of interest, then provided as an
input to a CNN for image reconstruction. In contrast to
previously discussed model‐based approaches [204,207],
this approach does not learn prior constraints from
training data and instead the CNN uses more information
directly from the CNN and sensor data to reconstruct an
image. This utilization of sensor data directly shares
similarity with source localization methods [196,200,201].
The majority of methods discussed up until this point

have used simulations in the training process for photo-
acoustic image formation. Davoudi et al. [209] take a
different approach to address sparse sampling challenges
by using whole‐body in vivo mouse data acquired with a
high‐end, high‐channel count system. This approach also
differs from previously discussed approaches by operating
solely in the image domain (i.e., rather than converting
sensor or channel data to image data).

Fluence correction: The previous sections address
challenges related to sensor spacing and sensor geo-
metries. However, challenges introduced by the laser and
light delivery system limitations may also be addressed
with DL. For example, Hariri et al. [210] used a multi‐
level wavelet‐CNN to denoise photoacoustic images ac-
quired with low input energies, by mapping these low
fluence illumination source images to a corresponding
high fluence excitation map.

Limited transducer bandwidth: The band-
width of a photoacoustic detector determines the spatial
frequencies that can be resolved. Awasthi et al. [211]

developed a network with the goal of resolving higher
spatial frequencies than those present in the ultrasound
transducer. Improvements were observable as better
boundary distinctions in the presented photoacoustic
data. Similarly, Gutta et al. [219] used a DNN to predict
missing spatial frequencies.

Segmentation. After photoacoustic image formation is
completed, an additional area of interest has been
segmentation of various structures of interest, which
can be performed with assistance from DL. Moustakidis
et al. [220] investigated the feasibiliity of DL to segment
and identify skin layers by using pretrained models (i.e.,
ResNet50 [221] and AlexNet [222]) to extract features
from images and by training CNN models to classify skin
layers directly using images, skipping the processing,
transformation, feature extraction, and feature selection
steps. These DL methods were compared to other ML
techniques. Boink et al. [223] explored simultaneous
photoacoustic image reconstruction and segmentation
for blood vessel networks. Training was based on the
learned primal‐dual algorithm [224] for CNNs, including
spatially varying fluence rates with a weighting between
imaging reconstruction quality and segmentation quality.

Spectral unmixing and quantitative imaging.
Photoacoustic data and images may also be used to
determine or characterize the content of identified regions
of interest based on data obtained from a series of optical
wavelength excitations. These tasks can be completed
with assistance from DL.

Cai et al. [225] proposed a DL framework for quanti-
tative photoacoustic imaging, starting with the raw
sensor data received after multiple wavelength trans-
misions, using a residual learning mechanism adopted to
the U‐Net to quantify chromophore concentration and
oxygen saturation.

Emerging applications. Demonstrated applications
for image formation with DL has spanned multiple spatial
scales, with applications that include cellular‐level
imaging (e.g., microscopy [226], label‐free histology),
molecular imaging (e.g., low concentrations of contrast
agents in vivo [210]), small animal imaging [209], clinical
and diagnostic imaging, and surgical guidance [196]. In
addition to applications for image formation, other
practical applications in photoacoustic imaging and
sensing include neuroimaging [208,227], dermatology

Fig. 10. Example of blood vessel and tumor phantom results with multiple DL approaches.
(Reprinted from [204].) DL, deep learning.
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(e.g., clinical evaluation, monitoring, and diagnosis of
diseases linked to skin inflammation, diabetes, and skin
cancer [220]), real‐time monitoring of contrast agent
concentrations, microvasculature, and oxygen saturation
during surgery [202,225], and localization of biopsy needle
tips [228], cardiac catheter tips [228–230] or prostate
brachytherapy seeds [200].

Diffuse Tomography

Overview. Diffuse optical tomography (DOT),
fluorescence diffuse optical tomography (fDOT, also
known as fluorescence molecular tomography [FMT]),
and bioluminescence tomography (BLT) are non‐invasive
and non‐ionizing 3D diffuse optical imaging techniques
[231]. They are all based on acquiring optical data from
spatially resolved surface measurements and performing
similar mathematical computational tasks that involve
the modeling of light propagation according to the
tissue attenuation properties. In DOT, the main
biomarkers are related to the functional status of
tissues reflected by the total blood content (HbT) and
relative oxygen saturation (StO2) that can be derived
from the reconstructed absorption maps [232]. DOT has
found applications in numerous clinical scenarios
including optical mammography [233,234], muscle
physiology [235], brain functional imaging [236], and
peripheral vascular diseases monitoring. In fDOT, the
inverse problem aims to retrieve the effective quantum
yield distribution (related to concentration) of an
exogenous contrast agent [237,238] or reporter gene in
animal models [239] while illuminated by excitation light.
In BLT, the goal is to retrieve the location and strength of
an embedded bioluminescent source.
The highly scattering biological tissues lead to ill‐posed

nonlinear inverse problems that are highly sensitive to
model mismatch and noise amplification. Therefore, to-
mographic reconstruction in DOT/fDOT/BLT is often
performed via iterative approaches [240] coupled with
regularization. Moreover, the model is commonly line-
arized using the Rytov (DOT) or Born (DOT/fDOT)
methods [241]. Additional constraints, such as pre-
conditioning [242] and a priori information are im-
plemented [243–246]. Further experimental constraints
in DOT/fDOT are also incorporated using spectral and
temporal information [247]. Despite this progress, the
implementation and optimization of a regularized inverse
problem is complex and requires vast computational re-
sources. Recently, DL methods have been developed for
DOT/fDOT/BLT to either aid or fully replace the classical
inverse solver. These developments have focused on two
main approaches, including (i) learned denoisers and (ii)
end‐to‐end solvers.

Learned denoisers. Denoisers can enhance the final
reconstruction by correcting for errors from model
mismatch and noise amplification. Long [248] proposed
a 3D CNN for enhancing the spatial accuracy of
mesoscopic FMT outputs. The spatial output of a
Tikhonov regularized inverse solver was translated into

a binary segmentation problem to reduce the
regularization‐based reconstruction error. The network
was trained with 600 random ellipsoids and spheres as it
only aimed to reconstruct simple geometries in silico.
Final results displayed improved “intersection over
union” values with respect to the ground truth. Since
denoising approaches still involve inverting the forward
model, it can still lead to large model mismatch. Hence,
there has been great interest in end‐to‐end solutions that
directly map the raw measurements to the 3D object
without any user input.

End‐to‐end solvers. Several DNNs have been
proposed to provide end‐to‐end inversion. Gao et al.
[249] proposed a MLP for BLT inversion for tumor cells,
in which the boundary measurements were inputted to
the first layer that has a similar number of surface nodes
as a standardized mesh built using MRI and CT images of
the mouse brain, and output the photon distribution of the
bioluminescent target. Similarly, Guo et al. [250] proposed
‐Ĳ3D‐En‐Decoder‐İ, a DNN for FMT with the encoder‐
decoder structure that inputs photon densities and
outputs the spatial distribution of the fluorophores. It
was trained with simulated FMT samples. Key features of
the measurements were extracted in the encoder section
and the transition of boundary photon densities to
fluorophore densities was accomplished in the middle
section with a fully connected layer. Finally, a 3D‐Decoder
outputted the reconstruction with better accuracy than
L1‐regularized inversion method in both simulated and
phantom experiments.

Huang et al. [251] proposed a similar CNN approach.
After feature encoding, a ‐ĲGated Recurrent unit (GRU)‐İ
combines all the output features in a single vector, and the
MLP (composed of two hidden layers with dropout and
ReLu activations) outputs the fluorophores’ location. Si-
mulated samples of a mouse model (with five organs and
one fluorescent tumor target) were used. In silico results
displayed comparable performance to an L1 inversion
method. It was also validated with single‐embeddings in
silico by outputting only the positions since the network
does not support 3D rendering. Yoo et al. [252] proposed
an encoder‐decoder DNN to invert the Lippmann‐
Schwinger integral photon equation for DOT using the
deep convolutional framelet model [253] and learn the
nonlinear scattering model through training with
diffusion‐equation based simulated data. Voxel domain
features were learned through a fully connected layer, 3D
convolutional layers and a filtering convolution. The
method was tested in biomimetic phantoms and live ani-
mals with absorption‐only contrast. Figure 11 shows an
example reconstruction for an in vivo tumor in a mouse
inside water/milk mixture media.

Summary and future challenges. DL has been
demonstrated for improving (f)DOT image formation for
solving complex ill‐posed inverse problems. The DL
models are often trained with simulated data, and in a
few cases, validated in simple experimental settings.
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With efficient and accurate light propagation platforms
such as MMC/MCX [254,255], model‐based training could
become more efficient. Still, it is not obvious that such DL
approaches will lead to universal solutions in DOT/FMT
since many optical properties of tissues are still unknown
and/or heterogeneous. Hence, further studies should aim
to validate the universality of the architectures across
different tissue conditions.

Functional Optical Brain Imaging

Overview. Functional optical brain imaging provides
the opportunity to correlate neurobiological biomarkers
with human behaviors, which impacts numerous fields,
such as basic neuroscience, clinical diagnostics, brain
computer interface (BCI), and social sciences. The two
main established human functional optical brain imaging
approaches are functional near‐infrared spectroscopy
(fNIRS) and diffuse correlation spectroscopy (DCS), both
of which report brain activations via monitoring changes
in optical signals as light reflected back to the detector
while traveling through cortical areas.
Classical neuroimaging studies are based on statistical

analysis of biomarkers from a large group of subjects with
different statuses (resting/active, stimuli/non‐stimuli,
disease/disease‐free, etc.). However, the derivation of the
biomarkers of interests are associated with data proc-
essing workflows that can be complex and computation-
ally intensive. While numerous applications in neuro-
imaging inherently focus on classification of subjects
based on spatiotemporal features, DL methods have two
outstanding benefits. First, there is the potential to ex-
tract meaningful features from high‐dimensional noisy
data without expert knowledge required for the input/
output mapping. Second, DL methods enable statistical
inference at the single subject level which is critical for

clinical practice. Hence, there has been a recent surge in
DL solutions for functional optical brain imaging.

Classification based on cortical activations. Most
DL applications to functional optical brain imaging have
focused on classification tasks based on fNIRS. Hiroyasu
et al. [256] reported a DNN to perform gender
classification on subjects performing a numerical
memory task while subjecting to a white‐noise sound
environment to elicit gender‐based differences in cortical
activations. Using time series data of oxygenated
hemoglobin of the inferior frontal gyrus on the left side
of the head captured by 4 fNIRS channels, they reported a
81% accuracy in gender classification. The learned
classifier identified the inferior frontal gyrus and
premotor areas provide the highest discrimination
accuracy. Mirbagheri et al. [257] developed a DNN to
predict stress using fNIRS data collected on the prefrontal
cortex regions, demonstrating 88% accuracy when
following the Montreal Imaging Stress Task (MIST)
protocols [258].

DL has also been used on fNIRS data for diagnostic and
therapeutic applications [259]. Rosas‐Romero et al. [260]
developed a CNN to predict epilectic seizure (Fig. 12) and
reported accuracy ranging between 97% and 100%, sen-
sitivity between 95% and 100% and specificity between
98% and 100% using both oxy‐ and deoxy‐hemoglobin
time series as the input. Electroencephalography (EGG)
data were acquired simultaneously, but fNIRS predictive
features outperformed EGG predictive features. Another
use of fNIRS is in psychological studies. Bandara et al.
[261] reported a CNN with Long Short Term Memory
(LSTM) to analyze spatiotemporal oxy‐ and deoxy‐ he-
modynamics data from the prefrontal cortex for classi-
fying human emotions and achieved 77% accuracy using
both oxy‐ and deoxy‐hemoglobin data and 1‐second time
steps. These results demonstrate that spatiotemporal
features are desired for fNIRS‐based classification tasks,
and the DL methods excel in feature exaction in such high
dimensional data sets. However, all the reported studies
followed well‐defined protocols that are prevalent in
neuroimaging studies but are not always conducive for
real‐word applications.

Another thrust in fNIRS study is to evaluate mental
workload from human computer interaction (HCI) in
scenarios, such as driving, air traffic control, and surgery.
Benerradi et al. [262] reported a CNN for classifying
mental workload using fNRIS data from HCI tasks and
achieved an accuracy of 72.77% for 2 classes and 49.53%
for 3 classes. The CNN was benchmarked against logistic
regression and SVM, but no particular improvements
were noted. Gao et al. [263] reported a BRAIN‐Net to
predict surgical skill levels within the Fundamental of
Laparoscopic Surgery (FLS) program environment, dem-
onstrating a ROC‐AUC of 0.91 in predicting the FLS Score
using fNIRS data collected on the prefrontal cortex of
medical students performing the FLS pattern cutting
task. BRAIN‐Net outperformed classical ML techniques,
including Kernel Partial Least Squares (KPLS), nonlinear

Fig. 11. Reconstruction for a mouse with tumor (right thigh)
where higher absorption values are resolved (slices at z= 15 and
3.8mm) for the tumor area with the DNN in (a) compared with
the L1‐based inversion in (b). (Adapted with permission from the
authors from [252]).
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SVM, and Random Forest, when the data was larger than
600 samples. These results demonstrated the potential of
DL for behavior prediction as reported by well‐established
metrics with freely mobile and unconstrained subjects
performing challenging bimanual tasks. Hence,
DL‐enabled fNIRS methods have the potential for im-
pacting real‐world applications. In this regard, one of the
most exciting applications of neuroimaging is BCI.

Brain computer interface. DL is expected to
advance BCI [264]. To date, DL methods for BCI have
mainly focused on EGG and to a lesser extent to Magnetic
resonance imaging (MRI) or Electromyography (EMG).
About 70% of the current work use CNN as discriminative
models, 20% use Recurrent neural network (RNN) [106],
while generative models (e.g., GAN or VAE) are rarely
employed. Impressive results have been reported for real
time control of a robot arm using DL‐based BCI [265].
Following these trends, a few studies have been reported
on DL‐enabled fNIRS BCI. Hennrich et al. [266] reported

a DNN that offered similar accuracy as compared to
conventional methods in mental task classification.
Dargazany et al. [267] implemented a CNN to recognize
activity response in fNIRS data for five different activities
and reported a 77‐80% accuracy in classifying these tasks.
Trakoolwilaiwan et al. [268] developed a CNN to classify
between rest, right‐ and left‐hand motor execution tasks
and achieved classification accuracy within 82‐99%
depending on the specific subject, which was 6.49% more
accurate than SVM and 3.33% more accurate than ANN.
As BCI is a challenging task due to noisy data, one
current research direction is the implementation of
multimodal systems, especially EGG‐fNIRS systems, for
improved performance. Saadati et al. [269] reported a
DNN for processing multimodal input from the variation
of oxy‐ and deoxy‐hemoglobin from fNIRS and the event‐
related desynchronization (ERD) from EGG, achieving
the highest accuracy when compared to methods using a
single biomarker and 92% accuracy for the word
generation task compared to 86% for SVM.

Fig. 12. Hemodynamic time series for prediction of epileptic seizure using a CNN (with
permission from Romero et al. [260]) (Copyright (2020), with permission from Elsevier).
fNIRS, functional near‐infrared spectroscopy.
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Denoising and fast data processing. Data
preprocessing in optical neuroimaging is critical and
includes dynamic range correction, transforming light
attenuation to chromophore concentration, regressing
shallow hemodynamic response to increase the
sensitivity to cortical tissues, identifying and removing
noise, especially motion artifacts. These steps typically
require user inputs and are computationally intensive.
Gao et al. [270] demonstrated a DNN for suppressing
motion artifacts in raw fNIRS signals and identified 100%
of the motion artifacts almost in real time. Poon et al.
[271] reported a DNN in DCS that was 23× faster in
estimating the tissue blood flow index compared to the
traditional nonlinear fitting method. Hence, DL
methodologies may facilitate the adoption of DCS for
neuroimaging studies by enabling real‐time and accurate
tissue blood flow quantification in deep tissues.

Future directions and associated challenges. DL
methods herald the potential for subject‐specific
classification on the fly, leading to fast and direct
feedback based on real‐time monitoring of brain
functions. It also has potential for neuro‐feedback in
numerous therapeutic scenarios or cognitive/skill
learning programs. In addition, DL has been largely
adopted in brain connectivity studies [272], which has
become prevalent for deciphering the brain circuitry [273]
and diagnostic purposes [274]. Similar to MRI [275], DL is
expected to play a critical role in next generation
functional brain connectivity studies [276]. Still,
numerous challenges lie ahead to implement full end‐to‐
end solutions in data processing and classification.
One main challenge is the size of the population needed

for generating the data sets. As we are still far from being
able to model the complexity of brain functions and dy-
namics, this challenge is complicated by the need to train
and validate neuroimaging DL approaches with ex-
perimental data. In numerous fNIRS and DCS studies,
subject recruitment is limited and no public database is
readily available. Such limitations have been recognized
in all existing work. For such emerging methodologies,
great care should be directed to appropriate cross‐
validation of the DL methods. Hence, validation methods
such as k‐fold and/or leave‐one‐out (one refers to one
subject out, one trial out, or one day out, etc.) are essential
to convey confidence of the usefulness of the method-
ology [277].
In addition, numerous applications of optical neuro-

imaging involve environments and tasks that cannot be
fully controlled and/or restricted. Thus, brain cortical ac-
tivations and connectivity can reflect response to complex
stimuli in which “ground truth” can be challenging to
establish. For example, it would be ideal to use a stand-
ardized and accredited metric (i.e., the FLS score) in
various neuro‐based applications. However, such objective
standards do not exist and labeling of the data can be
problematic. These challenges also limit the potential of
DL for discovery and mapping of the brain circuitry. If DL
were to become preponderant in functional connectivity

studies, it also faces the current challenge of being pri-
marily employed in the brain at rest, which does not offer
insight into active states of interest.

CHALLENGES AND OPPORTUNITIES ACROSS
MULTIPLE IMAGING DOMAINS

Challenges

Data availability and bias. Most DL models for
biomedical optics rely on “supervised learning” that are
trained on domain‐ and/or task‐specific data sets, which
need to be carefully curated to ensure high‐quality
predictions. As a result, there are several inherent
challenges in the data generation process that need to
be addressed, including data availability and data bias
[278]. For many applications, it is often difficult and costly
to acquire a large‐scale data set. Novel techniques that
can better leverage small‐scale data set while still
providing high‐quality models are needed, such as
unsupervised, semi‐supervised, and self‐supervised
learning, transfer learning, and domain adaptation. In
addition to the overall scale of the data set, the data may
also be skewed or biased [279] because it may be difficult
to acquire data with a balanced distribution for each sub‐
group, such as gender, ethnicity, etc. DNNs trained on
biased data set can result in erroneous predictions in
particular for under‐represented populations and
diseases. These obstacles may be mitigated to some
extent with careful planning and data collection.
However, there is a need to also identify and reduce
data biases in the modeling step, such as data
augmentation and balanced loss function design.

Interpretability. A common challenge of DL models is
that they are generally “black‐boxes” and their
predictions typically cannot be precisely explained. This
is particularly problematic in health applications. To
address this issue, “interpretable/explainable” DL
techniques [280,281] are needed. To this end, there are
two general approaches that are actively being researched
in the field [282]. The first is to develop an interpretable
computational structure instead of DNNs [283,284], so
that the predictions are made based on the crafted logic in
the DL model. The second approach is to provide post hoc
model prediction interpretation, such as attention
mechanism [42,285] and uncertainty quantification
[20,286,287], while keeping the same DNN structure.

Prospective and real‐world validation. In general,
there is a need for prospective evaluations of DL‐based
systems in real clinical settings. The performance of DL
models are commonly evaluated post hoc using metrics
often not directly translatable to improving patient care.
To critically evaluate the performance and move to
clinical impact, these gaps must be bridged. First and
foremost, large‐scale prospective testing is needed, ideally
with multiple sites, users, and instruments. Second, it is
also important to develop quantitative metrics to relate
those commonly used in DL model development to those
most pivotal in improving the management of disease.
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Opportunities

Exploiting multimodal data. DNNs provide
powerful frameworks for integrating multimodal and
multi‐dimensional data [15]. Biomedical optics systems
often acquire measurements that augment traditional
visualization or span a wide range of resolutions, imaging
speeds, and sources of contrast. A fundamental barrier to
the clinical translation of these technologies is that their
benefit must outweigh the cost of additional training and
time required to interpret and monitor these data. DL
models can efficiently analyze these data together and
transform them to actionable representations, reducing
these training barriers while increasing the diagnostic
power of multimodal imaging.

Lowering costs. First, as shown in many examples
herein, DL can enable new imaging capabilities that
improve resolution, acquisition speed, FOV, and DOF
often with minimal hardware modifications. This means
that high‐quality measurements can increasingly be
made using relatively simple and lower cost systems.
Second, DL technologies can enable more efficient
workflows in healthcare and research, such as digital
staining/labeling of tissues to reduce the cost and time
associated with sample preparation.

Deskilling procedures. Automated data processing
and interpretation by DL may reduce the level of skill
needed to obtain measurements and provide a diagnosis.
A major benefit of DL‐based processing is that it is “end‐
to‐end.” This means that once the DNN is trained, it
enables automated reconstruction without any additional
manual parameter tuning, potentially making it more
generalizable and robust than classical approaches. This
advantage must be balanced with great care and
heightened responsibility to ensure ethical usage and
unbiased outputs of these end‐to‐end DNN algorithms.

Increasing access to high‐quality health care. The
ability of DL to lower cost and training requirements for
diagnostic technologies holds tremendous potential for
increasing access to high‐quality health care in low‐
resource settings.

SUMMARY AND OUTLOOK

DL‐based techniques have shown promise in addressing
various technical challenges for developing novel bio-
medical optics systems, such as overcoming physical
trade‐offs, as well as enabling novel capabilities beyond
existing solutions. Successful examples are available
across multiple imaging domains, including microscopy,
fluorescence lifetime imaging, in vivo microscopy, wide-
field endoscopy, optical coherence tomography, photo-
acoustic imaging, diffuse tomography, and functional op-
tical brain imaging. Techniques are vast and varied,
ranging from providing microscopic sub‐cellular in-
formation to localizing image sources and offering mac-
roscopic biomarkers. With the advances of DL techniques
in many different biomedical optics domains, there are

also some outstanding challenges that must be addressed
in order to fully realize the impact of these techniques. As
we are rapidly seeing across multiple biomedical optics
modalities, DL techniques have promising potential to
lower system costs, reduce required skill levels to carry
out measurements, and ultimately increase the quality,
affordability, and accessibility of health care.
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