Theoretical predictions of the generalized
contrast-to-noise ratio for photoacoustic 1images

Mardava R. Gubbi* and Muyinatu A. Lediju Bell**
*Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
TDepartment of Computer Science, Johns Hopkins University, Baltimore, MD
iDepartment of Biomedical Engineering, Johns Hopkins University, Baltimore, MD

Abstract—Target detectability in photoacoustic imaging ap-
plications is traditionally analyzed using image quality metrics,
such as signal-to-noise ratio, contrast, and contrast-to-noise ratio.
These metrics are difficult to interpret in the context of target
detectability due to their lack of an upper bound and their
sensitivity to image manipulation techniques such as thresholding.
The generalized contrast-to-noise ratio (gCNR) is a recently
introduced metric designed to assess the probability of lesion
detection in ultrasound images. Previous work used empirical
models of target and background signals to demonstrate the
applicability of gCNR to analyzing target detectability in pho-
toacoustic images. In this work, a theoretical framework for
gCNR prediction is developed and validated using simulated,
experimental, and in vivo data. We compare predicted and
measured gCNR values across variations in channel SNR, laser
energy, and frame averaging. Mean absolute errors between
predicted and measured gCNR values were 0.032 £+ 0.052, 0.057
+ 0.127, and 0.023 + 0.033 for 1,215 simulated images, 3,888
experimental images, and 810 irn vivo delay-and-sum images,
respectively, with channel SNRs ranging -40 dB to 40 dB. In
addition, we explored relationships among gCNR, laser energy,
and channel data frame averaging. Results have the potential
to improve our understanding of minimum energy requirements
when designing photoacoustic imaging systems. In addition, the
theoretical gCNR prediction framework provides a promising
foundation to improve the efficiency of presurgical tasks such as
energy selection for photoacoustic-guided surgeries.

Index Terms—photoacoustic imaging, image processing

I. INTRODUCTION

Target detectability in photoacoustic images is traditionally
assessed using image quality metrics such as signal-to-noise
ratio (SNR), contrast, and the contrast-to-noise ratio (CNR)
[1], [2]. These metrics lack upper bounds, complicating their
interpretation in the context of target detection. In addition,
SNR, contrast, and CNR are sensitive to common image ma-
nipulation techniques such as dynamic range adjustment and
thresholding, which may lead to an increase in these metrics
without a corresponding improvement in target detectability
[3].

The generalized contrast-to-noise ratio (gCNR) is a new
image quality metric introduced to assess the probability of
lesion detection in ultrasound images [4]. Rodriguez-Molares
et al. [4] described gCNR as a measure of the accuracy of
a two-class classifier operating on a given ultrasound image,
then used this description to establish a theoretical framework
to predict the gCNR of ultrasound images. This ultrasound-
based framework is insufficient for photoacoustic images for
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three reasons. First, photoacoustic target signal characteristics
differ from those of ultrasound targets. Second, photoacoustic
targets typically have a higher optical absorption than the
background. Third, the theoretical ultrasound framework is
not equipped to solve the more complex decision boundaries
which can arise in photoacoustic images.

Previous work by our group demonstrated the applicability
of gCNR to photoacoustic images [5]. We used histograms rep-
resenting the target and background characteristics to measure
the gCNR of photoacoustic images. We demonstrated several
advantages of gCNR over more traditional image quality
metrics including ease of interpretation, smaller variations for
fully detectable targets, and robustness to image manipulation
techniques such as thresholding and dynamic range adjust-
ment. However, no theoretical framework similar to [4] has
been developed for photoacoustic images, and histogram-based
measurements of gCNR are sensitive to parameters such as
the width and positions of the histogram bins which affect the
representation of the underlying target and background signals.

In this paper, we develop a theoretical gCNR prediction
framework for photoacoustic images to overcome these chal-
lenges. We use the two-class classifier formulation of gCNR
[4] and previously established models for photoacoustic target
signals [6] and noise [7] to derive an expression for gCNR
based on the photoacoustic signal characteristics of an image.
We then investigate the match between predicted and mea-
sured gCNR values for simulated, experimental, and in vivo
photoacoustic images across a range of channel SNR values.
Finally, we use this framework to investigate the relationship
among gCNR, frame averaging prior to delay-and-sum (DAS)
beamforming, and laser energy.

II. THEORY

Developing our theoretical framework to predict the gCNR
of photoacoustic images requires an understanding of the
gCNR framework for ultrasound images and the characteristics
of photoacoustic target and background signals. Rodriguez-
Molares et al. [4] describe gCNR as a normalized measure
of the highest achievable probability of success of a two-class
classifier operating on a given ultrasound image. The target
and background signals are assumed to follow complex normal
distributions, the target is assumed to be hypoechoic, and the
target and background regions of interest (ROIs) are assumed
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Fig. 1. Target and background power distributions extracted from a photoa-
coustic image, showing multiple points of intersection.

to have equal area. With these assumptions, gCNR is expressed
as:

gCNRyg =1 — </ 0 po(x)dw—'_/ pi(x)dac> , 1

—o00 €0

where p;(x) and p,(x) are the probability density functions
(PDFs) corresponding to signal powers of the target and back-
ground respectively, and ¢; is the optimal decision threshold
for the given image, computed from the point of intersection
between p;(x) and p,(x).

Hysi et al. [6] demonstrated that as a consequence of
photoacoustic speckle, the Nakagami-m distribution more ac-
curately fits the envelopes of photoacoustic RF signals than
the Rayleigh distribution used to model ultrasound signals.
We know that the square of a Nakagami-m distributed random
variable is Gamma distributed. As a result, we model the target
signal power as a Gamma distribution with the PDF:

zk—le—%
pi (z;k,0) = BT (k) (2)
where p; is the PDF of the target power distribution, x is the
target power, and k and 6 denote the shape and scale of the
Gamma distribution respectively.

Thermal noise characteristic to the ultrasound receiver is a
major component of noise in photoacoustic images. Thus, we
retain the assumption that the the background signal power
is represented with the exponential distribution [4], [7] and
model the noise power as:

>

1
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where p, is the PDF of the background power, x is the
background power, and p is the mean noise power.

Unlike in ultrasound images, the PDFs of the target and
background signal powers in photoacoustic images have up
to 2 points of intersection as shown in Fig. 1. These points
of intersection form the decision boundaries of the optimal
classifier. Selecting the optimal decision in each region formed
by these decision boundaries, we obtain the following equation
for the gCNR of a photoacoustic target:

gCNRp, = 1- OEO pi (x;k, 0) dx
= [ po (z; 1) da 4)
- ff pi (x;k,0) dz.

The optimal decision boundaries €y and €; are obtained by
finding the points of intersection of the target and background
signal power PDFs, resulting in the equation:

Pi (€m3 k,0) = Do (€mi 1) (5)

where m = 0, 1. Substituting Eq. 2 for p;(€,; k, 6) and Eq. 3
for p,(€m; 1) in Eq. 5, we obtain the equation:
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which simplifies to:

e = beC,. (7)

Equation 7 is satisfied by the LambertW function [8] as:

c a 1 g
€m = - x LambertW <<_c) (b) ) . ()

As Eq. 8 does not yield a simpler closed-form expression
for €,,, numerical values for ¢, are computed using the
lambertw function in MATLAB. These values are then
substituted into Eq. 4 to obtain the gCNR for the given
photoacoustic image.

III. METHODS

We analyzed three datasets to validate our theoretical frame-
work with gCNR measurements across a range of channel
SNR values. The first dataset contained simulated photoacous-
tic data from our previous publication [5]. These data were
simulated with target diameters of 6 mm, 8§ mm, and 10 mm
using the k-Wave toolbox [9], [10]. The second dataset was
acquired with a 5 mm-diameter optical fiber bundle submerged
in a water bath and interfaced to a Phocus Mobile Laser
(OPOTEK, Carlsbad, CA, USA). The laser was pulsed at
a rate of 10 Hz with a fixed wavelength of 760 nm and
laser energy at the fiber bundle tip varied from 15 m] to
68 m]. The setup was imaged using an Alpinion E-CUBE
12R ultrasound system (Seoul, South Korea) connected to
an Alpinion L3-8 linear transducer. For the remainder of our
paper, we refer to this as the experimental dataset. The third
dataset consisted of in vivo data acquired from the hepatic vein
of a Sus domesticus swine liver during experiments described
in a previous publication from our group [11], using the
photoacoustic imaging equipment described above with a laser
wavelength of 750 nm and a laser energy at the fiber bundle tip
of 53 mJ. Experiments were approved by the Johns Hopkins
University Animal Care and Use Committee.

Normally distributed noise was added to each channel data
frame in these three datasets to obtain channel SNR values
in the range -40 dB to 40 dB. Photoacoustic images were
created with DAS beamforming and normalized to ensure
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Fig. 2. Simulated, experimental, and in vivo photoacoustic images of targets
with added noise for channel signal-to-noise ratio (SNR) values of -20 dB, 0
dB, and 20 dB, with the target and background regions of interest (ROIs) in
orange and blue respectively.

a maximum amplitude of unity. Circular regions of interest
(ROIs) of equal area were used to quantify properties of the
target and the background of each image. The gCNR was
predicted as described in Section II. To validate the predicted
gCNR values, histograms of the target and background signal
powers were generated from the same ROIs with bin widths
computed as described in [12]. The gCNR was then measured
using Eq. 3 in [5], reproduced below for convenience:

N-1
gCNR, .,  =1— Z min{h;(zx), ho(zr)} 9)
k=0

After validating our theory across variations in channel
SNR, we explored the relationship among gCNR, frame aver-
aging, and laser energy. One end of a 2 mm-diameter optical
fiber bundle was inserted into a plastisol phantom, and the
other end of the fiber bundle was interfaced to an LS-Series
Pulsed Laser Diode (PLD) (Laser Components, Bedford, NH,
USA). The PLD was pulsed at a rate of 20 Hz with a fixed
wavelength of 905 nm and laser energy levels in the range O
to 26.5 uJ. The setup was imaged using the same Alpinion
scanner and L3-8 transducer as described above. The acquired
channel data frames were averaged in increments 10 up to a
maxium of 100 averaged frames for each laser energy. Pho-
toacoustic images were formed with DAS beamforming from
both the averaged and the individual channel data frames. The
beamformed images were normalized to ensure a maximum
amplitude of unity. Elliptical ROIs of equal area were used to
quantify properties of the target and the background of each
image. The gCNR was then predicted and measured for the
photoacoustic images to quantify gCNR as functions of frame
averaging and laser energy.

IV. RESULTS

Fig. 2 compares simulated, experimental, and in vivo results
obtained with channel SNRs of -20 dB, 0 dB, and 20 dB. Each
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Fig. 3. The mean and standard deviation of predicted and measured gener-
alized contrast-to-noise ratio (gCNR) as a function of channel SNR for (a)
simulated targets with diameters ranging 6-10 mm, (b) a 5 mm optical fiber
bundle in a water bath, and (c) an in vivo swine hepatic vessel.

TABLE I
MEAN =+ STANDARD DEVIATION OF PREDICTED GCNR FOR SIMULATED,
EXPERIMENTAL, AND IN VIVO DATASETS AT CHANNEL SNR VALUES OF
-20 DB, 0 DB, AND 20 DB.

-20 dB 0 dB 20 dB
Simulated 0.05 +0.01 | 0.28 £ 0.06 | 0.34 + 0.07
Experimental | 0.38 + 0.10 | 091 £+ 0.14 | 0.97 £ 0.01
In Vivo 0.07 + 0.04 | 0.17 + 0.05 | 0.56 + 0.13

row shows improved target visibility as channel SNR increases
from -20 dB to 20 dB. These improvements correspond to
increases in both predicted and measured gCNR as the channel
SNR increases, as reported in Table 1.

Fig. 3 shows the predicted and measured gCNR as functions
of channel SNR. The black lines and grey shaded regions
denote the mean + one standard deviation of the predicted
gCNR for each dataset. The purple dots and error bars denote
the mean & one standard deviation of the measured gCNR
for each dataset. In each dataset, we observe a sigmoidal
relationship between gCNR and channel SNR. Note that no
gCNR value larger than unity was measured, despite the
grey shaded region crossing unity in Fig. 3 (b). Overall, the
predicted gCNR strongly agreed with the measured gCNR
with mean absolute errors (MAEs) of 0.032 £+ 0.052, 0.057
4 0.127, and 0.023 £ 0.033 for the simulated, experimental,
and in vivo datasets respectively.

Fig. 4 shows the measured and predicted gCNR values as
functions of the number of frames, separated by laser energy
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Fig. 4. Predicted and measured gCNR as functions of frame averaging

computed on photoacoustic images of a 2 mm-diameter optical fiber bundle
inserted into a plastisol phantom and interfaced to a Pulsed Lased Diode
(PLD). The data are separated by laser energy levels in the ranges (a) 0 +
1.91 pJ to 1.94 £ 1.39 pd, (b) 1.56 £ 1.61 puJ to 2.35 £ 2.09 pJ, and (c)
2.00 £ 2.12 pJ to 26.47 £+ 2.34 pJ. The thin solid and dashed lines denote
the predicted and measured gCNR, respectively. The thick solid and dashed
lines denote the mean of the thin lines for the predicted and measured gCNR,
respectively.
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Fig. 5. Predicted and measured gCNR as functions of laser energy, obtained
from images acquired with a pulsed laser diode and plastisol phantom.

levels. In Fig. 4(a), the laser energy levels (0 &= 1.91 uJ to 1.94
+ 1.39 ) are too low for frame averaging to significantly
improve gCNR. The predicted gCNR stays between 0.105 +
0.054 and 0.254 £ 0.092 as the number of averaged frames
increases from 1 to 100. Fig. 4(b) shows mid-range laser
energy levels (1.56 £ 1.61 pJ to 2.35 & 2.09 1), representing
cases where frame averaging is most useful with regard to
improving gCNR. Fig. 4(c) shows higher laser energy levels
(2.00 £ 2.12 pJ to 26.47 £+ 2.34 pJ), representing cases where
frame averaging is unnecessary. Here, the mean predicted
gCNR begins at the high value of 0.962 4 0.125 without frame
averaging, and increases to 0.998 + 0.012 with 10 averaged
frames.

Fig. 5 shows the predicted and measured gCNR as functions
of laser energy levels in the range 0 to 26.5 pJ. The predicted
and measured gCNR were both small in the range 0 J to 1.94
©J, with maximum values in this region of 0.168 and 0.263
respectively. Both the predicted and measured gCNR showed
upward trends from 0.153 and 0.254 respectively to unity as
the laser energy increased from 2.35 uJ to 7.39 uJ. Both
predicted and measured gCNR saturated at unity above a laser
energy level of 7.39 pJ. In addition, the gCNR predictions
were observed to strongly agree with the measured gCNR for
laser energy levels above 2.50 pJ. Overall, the MAE between
predicted and measured gCNR values was 0.017 £ 0.041.

V. DISCUSSION & CONCLUSIONS

The development and validation of a theoretical framework
for gCNR prediction offers multiple advantages for both the
designers and end-users of photoacoustic imaging systems.
Reframing the design of a photoacoustic imaging system as the
problem of achieving a desired gCNR with the beamformed
images allows system engineers to better select parameters
such as laser energy and frame averaging. With knowledge of
the laser energy required to achieve a desired gCNR, design
engineers can avoid unnecessarily large and bulky lasers,
making their systems smaller and more suitable for surgical
and interventional suites. The gCNR metric has the potential
to be incorporated into the iterative design of photoacoustic
imaging systems to resize system components as required.
The ability to predict the behavior of gCNR with an increase
in averaged frames offers engineers an additional degree of

freedom to achieve desired form factors at the expense of
achievable frame rates.

The gCNR predictions show promise in improving the effi-
ciency of preoperative tasks for photoacoustic-guided surgical
and interventional procedures. For example, previous work
by our group studying cardiac catheterizations on in vivo
swine required trial and error to determine the optimal laser
energy for successful visual servoing during the procedure
[13]. Characterizing our visual servoing system with respect
to gCNR now enables us to bypass the process of trial and
error and instead consider a theory-based approach to selecting
desired laser energies [14].
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