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Abstract—Spectral unmixing techniques for photoacoustic im-
ages are often used to isolate signal origins (e.g., blood, contrast
agents, lipids). However, these techniques tend to exploit the
optical properties of different biological chromophores and do
not typically consider acoustic properties. Analysis of the acoustic
frequency response of photoacoustic signals has the potential
to provide additional discrimination of photoacoustic responses
from different materials, with the added benefit of potentially re-
quiring few optical wavelength emissions. This study presents our
initial results testing this hypothesis in a phantom experiment,
given the task of differentiating between photoacoustic signals
from deoxygenated hemoglobin (Hb) and methylene blue (MB).
Coherence-based beamforming, principal component analysis,
and nearest neighbor classification were employed to determine
ground-truth labels, perform feature extraction, and classify
image contents, respectively. The mean ± one standard deviation
of classification accuracy was increased from 0.67 ± 0.05 to 0.81
± 0.11 when increasing the number of wavelength emissions from
one to two, respectively. When using an optimal laser wavelength
pair of 690 and 870 nm, the sensitivity and specificity of detecting
MB over Hb were 1.00 and 1.00, respectively. Results are
highly promising for the differentiation of photoacoustic-sensitive
materials with comparable performance to that achieved with a
more conventional multispectral laser wavelength approach.

Index Terms—photoacoustic imaging, spectral unmixing, near-
est neighbour classification, frequency analysis, principal compo-
nent analysis.

I. INTRODUCTION

In photoacoustic imaging, spectral unmixing techniques [1]
are often used to isolate signal origins (e.g., blood, contrast
agents, lipids) with one goal of discriminating among biomark-
ers during surgical interventions. These techniques consist
of generating an overdetermined system of equations (i.e.,
more equations than variables) from the signal response of
each chromophore at different laser wavelengths, which can
then be solved with an optimization technique based on the
known optical absorption coefficient for each chromophore at
each wavelength. For example, Xia et al. [2] used a pseudo
inverse approach to differentiate photoacoustic responses orig-
inating from water, blood, and lipids, as well as differentiating
photoacoustic responses originating from tendons and nerves
[3]. More recently, Grasso et al. [4] proposed an iterative
approach to discriminate blood oxygenation levels by solving
the system of equations with a non-negative matrix factoriza-
tion, compensating for the ill-conditioned invertibility of the
absorption coefficient matrix. Despite their effectiveness, these
spectral unmixing techniques are typically infeasible for most

real-time applications because of the long overall acquisition
times associated with transmitting multiple laser wavelengths.
Traditional spectral unmixing techniques also do not typi-
cally consider differences in acoustic spectra, which has the
potential to provide additional information for differentiation
between biomarkers or different soft tissues, similar to the
information provided by spectral parameter classifications [5].

As an example of spectral parameters classification, Cao et
al. [6] used the acoustic spectra filtered with the frequency
response of the ultrasound transducer to conduct a k-means
clustering between photoacoustic signals originating from
olive oil and cholesterol. However, this spectral parameter
classification approach has three limitations. First, in contrast
to spectral unmixing techniques, labelled regions are required.
Second, these labelled regions rely on a priori information
about the location of materials to be differentiated. Third,
spectral parameters provide a limited snapshot of frequency
characteristics. These three limitations diminish feasibility
for image guidance during surgical interventions and reduce
classification performance.

To overcome the challenges described above with regard to
traditional spectral unmixing [2], [4] and spectral parameter
classification [6], we propose a novel, more general acoustic
frequency-based analysis method to discriminate photoacous-
tic responses from different materials. This method operates
directly on the magnitude of the pressure signals to provide
richer analysis information, presenting two key benefits. First,
the method uses the full baseband spectra (i.e., it does not
filter the spectra to the frequency response of the transducer).
Second, the method applies a classification framework using
a training and testing set of known photoacoustic-sensitive
materials (i.e., no a priori signal location information is
required). We hypothesize that this method, which relies on
an analysis of the acoustic frequency response from a single
or dual wavelength emission, is sufficient to differentiate
biomarkers and has the potential to increase possible frame
rates for real-time implementation in the operating room.

This paper presents initial results testing our hypothesis. A
frequency analysis was applied to the received photoacoustic
signals from two materials (i.e., blood and methylene blue)
injected in a plastisol phantom. The baseband frequency
spectra were then transformed to a reduced feature space
through principal component analysis (PCA) and the two
signal contents were identified using nearest neighbor clas-
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Fig. 1. Acquisition setup to test the differentiation of methylene blue (MB)
from blood (Hb). These photoacoustic-sensitive materials fill the hollow
chambers of a custom polyvinyl chloride plastisol (PVCP) phantom.

sification. The necessity to differentiate blood and methylene
blue is motivated by recently proposed photoacoustic-guided
hysterectomy techniques that require differentiation of uterine
arteries from ureters containing methylene blue [7].

II. METHOD

Fig. 1 shows the experimental setup used to differentiate
two photoacoustic-sensitive materials. A polyvinyl chloride-
plastisol (PVCP) was fabricated with length, width, and height
of 29 cm, 18 cm, and 10 cm, respectively. The phantom
was modified with ten cylindrical hollow chambers. Each of
these chambers had a diameter of 15 mm and a depth of
55 mm. Two of the hollow chambers were filled with a 1%
weight-by-volume aqueous solution of methylene blue (MB)
and human blood (Hb), and a 1-mm-diameter optical fiber
was inserted in each of the filled chambers. These fibers
originated from a bifurcated fiber bundle that was connected
to a Phocus Mobile laser (Opotek Inc., Carlsbad, CA, USA),
transmitting laser light with wavelengths ranging from 690-
950 nm in 10 nm increments. The tip of each optical fiber
was positioned approximately 15 mm below the top surface
of the chambers, and photoacoustic signals were generated
with an energy of 4 mJ at each fiber tip. By transmitting light
individually into each chamber, the differences in amplitude
response caused by fluence differences were minimized. The
generated photoacoustic signals were received by an Alpinion
L3-8 linear array ultrasound probe that was positioned on the
lateral wall of the phantom, approximately 40 mm away from
the hollow chamber cross section, as shown in Fig. 1.

Fig. 2 shows a summary of the framework for differentiating
photoacoustic signals sources. Raw data from each wavelength
were first averaged over 10 acquisitions to reduce incoherent
noise. Photoacoustic images were then generated using con-
ventional delay-and-sum (DAS) beamforming. Two regions of
interest (ROI) were defined to separate photoacoustic signals
generated from MB and Hb, located on the right and the left
sides of the photoacoustic images, respectively. Ground-truth
labels were segmented from locally weighted short-lag spatial
coherence (LW-SLSC) images [8] (i.e., a newer variant of

Fig. 2. Overview of proposed method to differentiate photoacoustic signal
sources using acoustic frequency information. The blue and red coherence
masks show regions of interest for methylene blue (MB) and blood (Hb),
respectively. Spectra are asymmetric with respect to frequency because
baseband signals were analyzed after IQ demodulation.

short-lag spatial coherence (SLSC) [9] beamforming), using a
regularization factor of α = 1 and an axial correlation kernel
of 2λ, where λ is the wavelength associated with the center
frequency of the L3-8 ultrasound probe. Binary segmentation
was performed using a -6 dB threshold mask applied to the
LW-SLSC images.

A frequency analysis was performed over the magnitude
of the pressure waves, which were either zero or positive,
rather than the original pressure waves used for conventional
beamforming, which have negative and positive values. For
each material (i.e., MB and Hb), the normalized power spectra
were calculated from a sliding window of axial kernels of in-
phase and quadrature (IQ) data (which was converted to base-
band with a modulation frequency of 2.5 MHz and a bandpass
filter of 200% bandwidth), each 3.85 mm in length. Principal
component analysis (PCA) was applied to the power spectra
of photoacoustic signals acquired at each laser wavelength in
order to reduce the length of each power spectra to its first
20 principal components. Finally, nearest neighborhood (NN)
classification was applied with the L2-norm as the measure
of distance. MB and Hb were considered as positive and
negative samples, respectively, for the estimation of accuracy,
sensitivity, and specificity metrics.

Fig. 3 shows two proposed spectral analyses: (1) dual
wavelength and (2) single wavelength. In the dual wavelength
analysis, the IQ spectra of the photoacoustic response from a
region of interest using two different wavelengths were stacked

Fig. 3. Two proposed spectral analyses for characterizations based on single
(top) and dual (bottom) wavelength emissions.
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Fig. 4. (a) Locally-weighted short-lag spatial coherence (LW-SLSC) pho-
toacoustic image overlaid on a DAS ultrasound image of MB (left) and Hb
(right), obtained with a laser wavelength emission of 950 nm. (b) Segmented
masks for MB and Hb after a -6 dB threshold was applied to the LW-SLSC
photoacoustic image.

and normalized to enhance differences in frequency content.
No stacking was required for the single wavelength analysis.

III. RESULTS AND DISCUSSION

Fig. 4(a) shows an example LW-SLSC photoacoustic image
co-registered to a DAS ultrasound image obtained with a laser
wavelength of 950 nm. Fig. 4(b) shows the corresponding
segmentation mask. The coherence-based LW-SLSC imaging
approach enabled successful segmentation and isolation of the
signals of interest.

Fig. 5 shows examples of stacked spectra (dual wavelength
analysis) of MB and Hb for 690 nm and 870 nm laser
wavelengths. The mean and standard deviation of the spectra
were generated by averaging all kernels of MB and Hb for the
training and testing set. In contrast to the single wavelength
analysis, the normalized spectra from stacking two wavelength
responses enhance the differentiation of MB and Hb.

Fig. 6 shows the NN classification sensitivity and specificity
when using single wavelengths in the range of 690 nm to 950
nm. The mean ± one standard deviation of sensitivity and
specificity was 0.69 ± 0.22 and 0.53 ± 0.15, respectively, and
the overall accuracy was 0.67 ± 0.05. The optimal wavelength
that yielded the highest sensitivity and specificity was 880 nm
(0.83 sensitivity and 0.69 specificity). Overall, these results
show a low classification performance when attempting to
discriminate photoacoustic signal by using the shape (and
not the amplitude) of the normalized spectrum of a single
wavelength.

Fig. 7 shows the NN classification sensitivity and specificity
when using a pair of wavelengths in the range of 690 nm to
950 nm. The mean ± one standard deviation of sensitivity and
specificity was 0.89 ± 0.20 and 0.74 ± 0.16, respectively, and
the overall accuracy was 0.82 ± 0.11. The optimal wavelength
pair that yielded the highest sensitivity and specificity was 690

Fig. 5. Examples of (top) training and (bottom) testing spectra of in-phase
quadrature data from MB and Hb. The spectra show combined results obtained
with 690 nm and 870 nm laser wavelength (dual wavelength analysis).

Fig. 6. Mean sensitivity and specificity when using the single wavelength
analysis setup. When considering wavelengths from 690 nm to 950 nm, the
mean ± one standard deviation of sensitivity and specificity was 0.69 ± 0.22
and 0.53 ± 0.15, respectively. The laser wavelength that reported the highest
combined sensitivity and specificity was 880 nm with a sensitivity of 0.83
and specificity of 0.69.

Fig. 7. Mean sensitivity and specificity when using the dual wavelength
analysis setup. When considering wavelengths from 690 nm to 950nm, the
mean ± one standard deviation of sensitivity and specificity was 0.89 ± 0.20
and 0.74 ± 0.16, respectively. The pair of laser wavelength that reported the
highest combined sensitivity and specificity was 690 nm and 870 nm with a
sensitivity of 1.00 and specificity of 1.00. The black region indicates redundant
entries that were not tested twice (only unique wavelength pairs were tested).

nm and 870 nm with a sensitivity of 1.000 and a specificity
of 1.00.
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Fig. 8. Comparison of sensitivity and specificity from single and dual
wavelengths analyses with (left) box plots and (right) sensitivity vs. 1-
specificity for the performance of each individual classifier.

Fig. 8 shows a comparative summary of the sensitivity and
specificity results when using the single and dual wavelength
analyses with our proposed method. Specifically, Fig. 8(a)
shows the box plots of sensitivity and specificity for both
analyses, where the horizontal lines represent the median,
the upper and lower edges of each box represent the upper
and lower quartiles of each data set, the top and bottom
lines extending from the boxes indicate the maximum and
minimum of each data set, and the crosses indicate outliers
defined as any value larger than 1.5 times the interquartile
range. Fig. 8(b) shows the same results as individual classifier
performance in an ROC-curve format. By assuming a threshold
of 0.90 specificity and 0.90 specificity as good classification
performance, 38 wavelengths pairs were found in the dual
wavelength analysis while no cases were found for the single
wavelength analysis.

Overall, the performance achieved with the dual wave-
length analysis was comparable to spectral unmixing method
requiring 29 [2] to 45 [4] wavelengths, and to an acoustic
frequency-based segmentation method [6]. When implement-
ing the spectral unmixing methods described by Xia et al.
[2] to differentiate between Hb and MB with 12 wavelengths
emissions (i.e., from 690 nm to 800 nm in 10 nm increments)
of 10 frames each, the mean sensitivity and specificity was
0.84 and 0.99, respectively. Similarly, the non-negative matrix
factorization method described by Grasso et al. [4] achieved a
mean sensitivity and specificity of 0.86 and 0.99, respectively.
Finally, the acoustic-based clustering method from Cao et al.
[6] achieved a mean sensitivity and specificity of 0.84 and
0.78, respectively, when averaging over the 27 wavelength
emissions. The best performance using the method in [6] with
a single wavelength emission occurred for a laser wavelength
of 940 nm, resulting in a mean sensitivity and specificity of
1.00 and 0.96, respectively.

IV. CONCLUSIONS

We developed a novel frequency-based photoacoustic clas-
sifier to distinguish photoacoustic-sensitive materials. This
classifier employs coherence-based beamforming, principal
component analysis, and nearest neighbor classification in
order to build an atlas of photoacoustic spectra specific to
methylene blue and blood. Results are highly promising for

the differentiation of photoacoustic-sensitive materials using
radiofrequency information from only two wavelength emis-
sions, with comparable performance to that achieved with a
more conventional multispectral approach.
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