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Abstract—Deep neural networks have demonstrated potential
to both create images and segment structures of interest directly
from raw ultrasound data in one step, through an end-to-end
transformation. Building on previous work from our group,
subaperture beamformed IQ data from in vivo breast cyst data
was the input to a custom network that outputs parallel B-mode
and cyst segmentation images. Our new model includes bright
point and line targets during training to overcome the limited
field of view challenges encountered with our previous deep
learning models, which were purely trained using simulations
of cysts and homogeneous tissue structures. This new network
resulted in cyst contrast values of -33.07 ± 10.79 dB, -32.09 ± 0.04
dB, and -15.95 ± 12.04 dB for simulated, phantom, and in vivo
data, respectively, which is an improvement over the contrast
of corresponding delay and sum (DAS) images (i.e., -17.37 ±
6.06 dB, -17.14 ± 0.16 dB, and -14.80 ± 1.30 dB for simulated,
phantom, and in vivo, respectively). Higher dice similarity co-
efficients (DSCs) were obtained with in vivo data with the new
network (0.83 ± 0.01) when compared to our previous model
(0.63 ± 0.03), and fewer false positives were encountered. This
work demonstrates the feasibility of using multi-task learning to
simultaneously form a B-mode image and cyst segmentation with
a wider field of view that is appropriate for in vivo breast imaging.
These results have promising implications for multiple tasks,
including emphasizing or de-emphasizing structures of interest
for diagnostic, interventional, automated, and semi-automated
decision making.

Index Terms—Ultrasound imaging, deep learning, beamform-
ing, image segmentation, in vivo breast imaging

I. INTRODUCTION

Advantages of ultrasound imaging include its portability,
cost effectiveness, and use of non-ionizing radiation, which
makes it a widely used imaging technique for diagnosing
various diseases, including breast cancer [1]. However, ultra-
sound imaging is known to suffer from image interpretation
challenges that arise due to speckle, clutter, and inefficient
filtering, often leading to indecisive segmentations. Our group
previously demonstrated that deep learning-based techniques
have the potential to overcome these challenges [2]. In par-
ticular, deep neural networks (DNN) were implemented to
perform end-to-end transformation tasks directly from sub-
aperture beamformed in-phase and quadrature (IQ) channel
data while also overcoming the challenges of acoustic clutter
and inefficient filtering [2]–[5].

One of the challenges with this end-to-end transformation
is the absence of receive focusing delays when learning
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information directly from raw channel data. The DNN input
often consists of data dimensions of time vs. channels while
the imaging output requires data to be displayed as depth vs.
width. To overcome this challenge, Nair et al. [2] developed a
DNN architecture that has the ability to map the temporal data
recorded on multiple channels to a single pixel in the lateral
image direction, thus performing the task of transforming
raw IQ data to final output images. The ability to map
temporal recordings to pixel locations enables the DNN to
take advantage of lower spatial frequencies available with raw,
complex, baseband, IQ data.

This end-to-end transformation model [2] performed multi-
task learning (a term described in more detail in [6]) by suc-
cessfully reconstructing B-mode ultrasound images in addition
to improving breast cyst segmentations. However, outstanding
limitations were encountered when testing on in vivo data,
including misidentifying hypoechoic regions in the image as
anechoic cysts, resulting in a limited field of view for success-
ful implementation. This paper addresses these limitations by
incorporating more representative features during the network
training process. Our results highlight the in vivo success
of task-specific DNNs in support of our larger vision to
provide multiple outputs from a single input of subaperture
beamformed IQ data with applications to improving automated
and semi-automated ultrasound-based decision making.

II. MATERIALS AND METHODS

A. Deep neural network architecture

A DNN based on the U-Net architecture [7] was modeled
to reconstruct and segment cysts from in vivo breast tissue.
After performing receive delays to construct a 3D data tensor
(depth × scanlines × 128 elements), we define one sub-
aperture as the summation of the delayed data received by
8 adjacent elements. The network input of 16 subapertures
of beamformed IQ data (i.e., 2 IQ channels per subaper-
ture, 32 IQ channels total) produced two parallel outputs
after multi-task learning: (1) an interpretable B-mode image
that emphasizes structures of interest and de-emphasizes less
important surrounding structures for the proposed task and
(2) a segmented cyst image. The network consisted of one
encoder and two decoders to extract information directly from
subaperture beamformed IQ data received after a single plane
wave insonification. The first decoder generated a DNN image
similar to a delay and sum (DAS) beamformed image, and the
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Fig. 1. Illustration of the DNN architecture employed in this study. The input is in-phase/quadrature (IQ), subaperture beamformed ultrasound data that
simultaneously outputs both a DNN image and a DNN segmentation directly from raw ultrasound channel data received after a single plane wave insonification.

second decoder generated a DNN segmentation of the cyst.
The employed DNN architecture is summarized in Fig. 1.

The dimensions of the focused downsampled subaperture
IQ channel data (Ifds) were of size d × w × qs, where d is
the length of IQ signal in the depth direction, w is the image
width (which is same as the number of transducer element
receive channels in our implementation), and qs has twice
the number of subapertures, each representing the in-phase or
quadrature component of the recording. The network produces
predictions of a DNN beamformed image and a corresponding
cyst segmentation map, each with dimensions d × w. A
fully convolutional neural network was employed to learn the
optimal mapping of Ifds −→ y, where y is the ground truth
reference for the optimal mapping. This reference consisted
of a true segmentation map, St, and the corresponding true
enhanced beamformed image, E. Thus, y describes the tuple
(E,St). Additional details about this network architecture are
available in Section II-E of [2].

B. Numerical simulations

The neural network trained by Nair et al. [2] and described
in Section II-A (named CystNet1 hereafter) did not include
bright point and line targets in the training dataset and,
thus, displayed limitations while performing in vivo imaging
tasks. Therefore, we extended the training dataset to include
numerical simulations containing bright point and line targets.
This new network is named CystNet2.

The dataset for DNN learning was created using numerical
simulations (created with Field II software [8], [9]) of indi-
vidual, anechoic, cylindrical cysts, positioned at 30-80 mm
depth, within cuboidal phantoms of 50 mm axial depth, 40 mm
lateral width, and 7 mm elevation thickness. A total of 66,690
of these simulations were created to include a combination
of these cyst targets, as well as point targets and bright line
targets. The simulated medium had cyst radii ranging 2-8 mm,
axial positions ranging 40-70 mm, and lateral positions ranging
−16 to 0 mm. The speed of sound ranged 1420-1600 m/s. A
random number generator with a unique seed was employed
to generate unique speckle realizations for each phantom and
thereby model the diversity expected within clinical datasets.
A total of 50,000 scatterers were modeled to ensure fully

developed speckle. The simulated dataset was divided into
training (80%), testing (10%), and validation (10%) sets.

C. Phantom and in vivo breast data acquisition

In addition to simulated data, phantom and in vivo ul-
trasound data were also acquired for network testing. The
phantom data was acquired from two anechoic cylindrical
inclusions in a CIRS 054GS phantom. These inclusions were
located at depths of 40 mm and 70 mm. An Alpinion E-
Cube 12R research scanner was used to acquire the channel
data with an Alpinion L3-8 linear ultrasound transducer. Two
independent 80-frame sequences were acquired. All phantom
channel data were flipped to augment the dataset, resulting in
320 total experimental phantom images.

The two in vivo breast cysts described in [2] were addi-
tionally tested. The first cyst (denoted as cyst #1) was imaged
with an 80 frame plane wave imaging sequence using the same
ultrasound equipment described in the preceding paragraph.
The second cyst (denoted as cyst #2) was imaged with a
10 frame ultrasound focused transmissions sequence using an
Alpinion L8-17 probe. These in vivo images were acquired
with Johns Hopkins Medicine Institutional Review Board
approval and informed consent. The acquired datasets were
transformed into focused subaperture beamformed IQ data to
use as input to the DNN [2]. The ground truth segmentations
for these datasets were manually created from B-mode images.
All in vivo channel data were flipped to augment the dataset,
resulting in a total of 180 images.

D. Image quality metrics

Contrast, signal-to-noise ratio (SNR), and generalized
contrast-to-noise ratio (gCNR) [10] were utilized to evaluate
DNN performance, using the following equations:

Contrast = 20 log10
Si

So
(1)

SNR =
So

σo
(2)

gCNR = 1−
1∑

x=0

min(pi(x), po(x)) (3)
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Fig. 2. Image formation and segmentation results for in vivo breast cyst #1 and cyst #2. The delay and sum (DAS) B-mode image, DNN reconstruction and
cyst segmentation for the previous network (i.e., CystNet1), and the DNN and cyst segmentation outputs for the proposed network (i.e., CystNet2) are shown.
Arrows point to network failure.

where Si and So are the mean signals inside and outside the
cyst region, respectively, σo is the standard deviation of signals
outside the cyst region, and pi(x) and po(x) represent the
probability mass functions of the signal inside and outside the
cyst region, respectively.

Peak signal to noise ratio (PSNR) was used to quantify the
similarity of a generated DNN image to its reference DAS
beamformed image, using the following equation:

PSNR(D,R) = 10 log10
MAX2

R

MSE
(4)

where D is the output DNN B-mode image, R is the normal-
ized reference image, MSE is the mean square error between
D and R. MAXR denotes the maximum absolute pixel value
of the reference image R, which is equal to 1 here.

The Dice similarity coefficient (DSC) was calculated to
quantify overlap between two segmentation masks [2], [11],
expressed as:

DSC(Sp, St) = 2
|Sp ∩ St|
|Sp|+ |St|

(5)

where Sp is the predicted DNN segmentation and St is the
true segmentation. A perfect DNN segmentation produces a
DSC of 1.

III. RESULTS AND DISCUSSION

Figure 2 (top) displays B-mode and cyst segmentation
images for cyst #1 obtained using CystNet1 and CystNet2.
As observed in previous work [2], CystNet1 produced false
positives in reconstructed images, which led to a limited field
of view. CystNet2 successfully overcomes these challenges
and provides cleaner and robust B-mode reconstruction and
cyst segmentation. Higher DSCs were obtained with in vivo
cyst segmentation performed with CystNet2 (0.83 ± 0.01)
when compared to the segmentation performed with CystNet1
(0.63 ± 0.03). The image quality metrics for this dataset
presented in Table I indicate that CystNet2 generally achieves
either similar or improved image quality compared to both
CystNet1 and DAS imaging.

Figure 2 (bottom) presents B-mode and cyst segmentation
results for cyst #2 achieved using CystNet1 and CystNet2.
Similar to the results obtained when testing with cyst #1,
CystNet1 produced false positives in the cyst segmentation
image, and CystNet2 overcame this and associated limited
field of view challenges discussed previously. Higher dice
similarity coefficients (DSCs) were obtained with the segmen-
tation performed with CystNet2 (0.79 ± 0.01) when compared
to segmentation performed with CystNet1 (0.36 ± 0.07).
A comparison of the image quality metrics for this dataset
(listed in Table I) reveals that CystNet2 generally achieves

TABLE I
QUANTITATIVE COMPARISON OF CYSTNET2 WITH CYSTNET1 [2] AND DELAY AND SUM BEAMFORMING (DAS)

Cyst #1 Cyst #2
CystNet2 CystNet1 DAS CystNet2 CystNet1 DAS

DSC 0.83 ± 0.01 0.63 ± 0.03 - 0.79 ± 0.01 0.36 ± 0.07 -
Contrast [dB] -15.95 ± 2.04 -28.84 ± 1.98 -14.80 ± 1.30 -24.21 ± 4.97 -32.56 ± 4.16 -21.33 ± 2.18

SNR 5.88 ± 0.49 5.18 ± 1.17 0.95 ± 0.15 9.81 ± 0.19 9.85 ± 0.14 1.06 ± 0.11
gCNR 0.61 ± 0.02 0.48 ± 0.18 0.61 ± 0.05 0.83 ± 0.04 0.89 ± 0.02 0.75 ± 0.10

PSNR [dB] 12.02 ± 0.03 16.66 ± 0.13 - 11.10 ± 0.07 18.69 ± 0.14 -
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either better or comparable performance to CystNet1 and DAS
images.

The mean ± standard deviation of the contrast of Cyst-
Net2 ultrasound images created from simulated and phan-
tom test data were −33.07 ± 10.79 dB and −32.09 ± 0.04
dB, respectively, which is an improvement over the con-
trast of corresponding DAS images (i.e., −17.37 ± 6.06 dB
and −17.14 ± 0.16 dB, respectively). CystNet2 generated
simulation and phantom test images with mean ± standard
deviation SNR values of 2.01 ± 0.63 and 1.78 ± 0.01,
respectively, compared to 1.95 ± 0.30 and 1.96 ±0.01 of the
DAS beamformed images, respectively. These results support
previous reports, demonstrating that DNN-based end-to-end
transformation models have the potential to provide superior
contrast and similar SNR when compared to conventional DAS
beamforming [2]–[4].

IV. CONCLUSION

The work presented in this paper demonstrates the ability
of DNNs to perform simultaneous image formation and cyst
segmentation, using a multi-task learning approach, producing
a wide field of view for in vivo breast images when incorpo-
rating a range of representative training features that include
cysts, tissue, lines, and points. We envisage that this work
will enhance the potential of ultrasound imaging for multiple
diagnostic tasks. Tasks requiring emphasis or de-emphasis of
specific structures are particularly well suited to benefit from
the proposed approach.
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Svein-Erik Måsøy, Andreas Austeng, Muyinatu A Lediju Bell, and Hans
Torp. The generalized contrast-to-noise ratio: a formal definition for
lesion detectability. IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, 67(4):745–759, 2019.

[11] Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare MC Tempany,
Michael R Kaus, Steven J Haker, William M Wells III, Ferenc A
Jolesz, and Ron Kikinis. Statistical validation of image segmentation
quality based on a spatial overlap index1: scientific reports. Academic
Radiology, 11(2):178–189, 2004.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on January 14,2021 at 16:13:28 UTC from IEEE Xplore.  Restrictions apply. 


