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Abstract—Plane wave ultrasound imaging is an ideal approach
to achieve maximum real-time frame rates. However, multiple
plane wave insonifications at different angles are often combined
to improve image quality, reducing the throughput of the system.
We are exploring deep learning-based ultrasound image forma-
tion methods as an alternative to this beamforming process by
extracting critical information directly from raw radio-frequency
channel data from a single plane wave insonification prior to the
application of receive time delays. In this paper, we investigate
a Generative Adversarial Network (GAN) architecture for the
proposed task. This network was trained with over 50,000 Field-
II simulations, each containing a single cyst in tissue insonified
by a single plane wave. The GAN is trained to produce two
outputs – a Deep Neural Network (DNN) B-mode image trained
to match a Delay-and-Sum (DAS) beamformed B-mode image
and a DNN segmentation trained to match the true segmentation
of the cyst from surrounding tissue. We systematically investigate
the benefits of feature sharing and discriminative loss during
GAN training. Our overall best performing network architecture
(with feature sharing and discriminative loss) obtained a PSNR
score of 29.38 dB with the simulated test set and 14.86 dB with a
tissue-mimicking phantom. The DSC scores were 0.908 and 0.79
for the simulated and phantom data, respectively. The successful
translation of the feature representations learned by the GAN
to phantom data demonstrates the promise that deep learning
holds as an alternative to the traditional ultrasound information
extraction pipeline.

Index Terms—Deep Learning, Generative Adversarial Net-
work, Ultrasound Image Formation, Beamforming, Image Seg-
mentation, Machine Learning

I. INTRODUCTION

Plane wave ultrasound imaging [1] is an ideal approach to
achieve maximum real-time frame rates. However, single plane
wave transmits typically yield poor quality ultrasound images.
This is particularly true when the data is negatively impacted
by degradations such as speckle and clutter. Coherent plane
wave compounding [2] mitigates this limitation by averaging
the data received from multiple plane wave insonifications
at different angles. While this combination improves image
quality, it results in reduced frame rates. Therefore, the steep
trade-off between image quality and acquisition speed still
exists.

This trade-off is an inescapable outcome of the traditional
ultrasound image formation process. While beamforming is
principled, interpretable and model-based, model-free data-
driven machine learning techniques, especially Deep Neural

Networks (DNNs), have recently proven to be very successful,
outperforming traditional model-based imaging methods in
diverse fields from natural image classification [3] to speech
recognition [4] and game playing [5].

In the past two years there has been an explosion of
interest in the ultrasound community as well in using deep
learning to replace various aspects of the ultrasound image
formation process. Previous work from our group [6], [7]
was the first to introduce and demonstrate deep neural net-
works that directly segment targets of interest from the raw
radiofrequency (RF) single plane wave channel data, prior to
applying time delays or any other traditional beamforming
steps. This work is promising for tasks that rely on increased
image display rates, such as robotic ultrasound tracking tasks
[7]. Our work is significantly different from other methods
that apply deep learning to a subset of the beamforming
process and learns parameters of a model [8]–[10]. Instead,
we take the novel approach of an end-to-end transformation
that learns information directly from raw RF data. Our method
also differs from the method presented in [11], which operates
on beamformed RF channel data rather than the unfocused RF
channel data that we use in our method. Similarly, our method
differs from the methods presented in [12]–[15] where deep
learning tasks include using DNNs for sound speed estimation
[12], reverberation noise suppression in the aperture domain
[13], using DNNS to produce CT-like images from B-mode
ultrasound images [14], or using focused RF channel data as
inputs to the network [15]. The method presented in [16] has
closest underlying goal to our approach, but the presented
approach trains on real data rather than simulated data and
it does not use plane wave imaging.

In addition to using convolutional neural networks (CNNs)
for image segmentation directly from raw RF data, we hy-
pothesize that the introduction of a Generative Adversarial
Network (GAN) [17] can help to improve our novel approach
to ultrasound beamforming, based on the success achieved
in previous work that applies GANs to ultrasound images.
This previous work attempts to learn a better plane wave
compounding operator [18], obtain better resolution by con-
structing 128 channel RF data from 32 channel RF data
[19], and generate B-mode images from given echogenecity
maps [20]. However, no previous work applies GANs to the
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beamforming process.
In this paper, we build on our pioneering approach to

beamforming [6], [7] to demonstrate that it is possible to ex-
tract sufficient information to both reconstruct a DAS B-mode
image and provide segmentation information. In addition, we
use a GAN to learn representations from the training dataset
simulated in Field-II that transfer better to data acquired
from an anechoic and -6dB hypoechoic cyst in a phantom
when compared with the performance of a plain CNN. We
quantitatively and qualitatively assess the performance of the
trained GANs as a function of multiple parameters of interest.
To the authors’ knowledge, this work is the first to extract
useful information from single plane wave RF channel data
prior to beamforming using a GAN framework trained purely
on simulated data and transferred to real experimental data.

II. METHODS

A dataset of 50,000 Field-II [21] simulations of a single cyst
in normal tissue was used to train our GAN. A total of 32,000
simulations contained an anechoic cyst and 18,000 simulations
contained a -6dB hypoechoic cyst. The other cyst parameters
that were varied are listed in Table I. The training set included
a random selection of 80% of these simulation cases, and the
remaining 20% was used as the validation set.

In each simulation, a single plane wave insonification trans-
mitted at 0 degrees was used. The parameters of an Alpinion
L3-8 linear array transducer (see Table II) were used for the
simulations to transfer the learned GAN to real data. The real
data was acquired with an Alpinion L3-8 transducer connected
to an Alpinion E-Cube 12R ultrasound research scanner.

An additional set of 100 Field-II simulations was generated
to test the GAN. The parameters for this test set were chosen
to randomly lie in the range of our training data. In addition,
the circular cross section of two cylinders (one anechoic and
one -6dB hypoechoic) at a depth of 40 mm in a CIRS 054GS
phantom was imaged to test the transferability of our network
trained exclusively on simulated data to experimental phantom
data. For the simulations, the ground truth segmentation mask
was known a priori, while the ground truth for the phantom
data was acquired by manually annotating pixels in the beam-
formed ultrasound image as cyst or tissue.

TABLE I: Simulated cyst parameters

Parameter Min Max Increment
Radius (r) 2 mm 8 mm 1 mm

Speed of Sound (c) 1440 m/s 1640 m/s 10 m/s
Lateral position of cyst center (x) -15 mm 15 mm 2.5 mm

Axial position of cyst center(z) 35 mm 75 mm 2.5 mm

TABLE II: Simulated transducer parameters

Parameter Value
Number of Elements 128

Pitch 0.30 mm
Aperture 38.4 mm

Element width 0.24 mm
Transmit Frequency 8 MHz
Sampling Frequency 40 MHz

An overview the GAN that we designed is presented in Figs.
1 and 2. The GAN has two major components – a generator
and a discriminator. In the generator, raw RF channel data
(prior to any delays) is fed into a fully convolutional encoder
and decoder based on the U-Net [22] architecture. The encoder
is a standard VGG-13 [23] encoder with BatchNorm [24]
layers used to speed up convergence. The decoder has the
structure of the encoder but mirrored, with up-convolutional
layers. Skip connections are also used to connect neurons
in the encoder and decoder at the same scale (as in U-
Net [22]). The encoder-decoder block returns two outputs –
one is a predicted B-mode-like image (which we term the
DNN image), while the other is a predicted segmentation of
the underlying cyst (which we term the DNN segmentation).
The two DNN predictions are then stacked together with
the RF channel data into a Fake (DNN) Stack and fed into
the discriminator. The Real (Beamformed) stack consisted of
the RF channel data and the corresponding DAS and true
segmentation reference images.

The entire generator was trained to minimize the weighted
sum of 3 losses:

1) Mean Absolute error (L1Loss) between the predicted
DNN image and the beamformed DAS B-mode image.
L1Loss is defined as

L1Loss(A,B) =
||A−B||1

N

where A and B are vectorized B-mode images with a
total of N pixels each.

2) Dice Similarity Coefficient loss (DSCLoss) between the
predicted DNN segmentation and the true segmentation.

DSCLoss(X,Y ) = 1− 2|X ∩ Y |
|X|+ |Y |

where X and Y are vectorized binary segmentation
masks.

3) A “realism” loss learned by the discriminator network.
The lower the binary cross-entropy loss value is for the
discriminator to predict the fake (DNN) stack as real,
the more realistic the result is. The discriminator thus
allows us to learn a non-trivial loss function that better
preserves finer image details [25].

The discriminator has a much simpler structure, as shown
in Fig. 2. Similar to the generator, the VGG-13 encoder with
batch normalization was employed here as well. If the input
stack to the discriminator was a real stack (i.e., containing
beamformed images), an ideal discriminator should label the
stack as such. On the other hand, if the input were a fake
stack (i.e., containing images created from the DNN), the
discriminator should label the stack as fake. Binary cross-
entropy loss used is used to train the discriminator.

We alternate between updating the weights of the two
networks. First, the generator is trained to produce good output
images that spoof the discriminator. Then, the discriminator
is trained to make the discriminator harder to spoof. The
training regimen can be viewed as a sequential game, with both



Fig. 1: An overview of our proposed pipeline relevant to the generator training update step with associated loss functions.
Raw RF channel data prior to delays is transformed using a fully convolutional encoder-decoder architecture into a DNN
B-mode image and a DNN segmentation. The two predicted images are stacked with the raw RF data and then fed into the
discriminator, which provides a score for how “realistic” the stack is. L1 Loss guides the B-Mode prediction, DSC Loss guides
the segmentation algorithm and binary cross-entropy loss is used to determine realisticness. Only the generator weights are
updated during this step (discriminator weights are held fixed).

Fig. 2: An overview of our proposed pipeline relevant to the discriminator training update step with associated loss functions. A
copy of the Raw RF channel data is stacked with the DAS B-Mode image obtained from beamforming and the true segmentation
mask to form the “real (beamformed)” stack. Another copy of the raw RF data is stacked with the DNN B-mode image and
the DNN segmentation mask to form the “fake (DNN)” stack. The discriminator is a classification network trained to label the
real stack as real and the fake stack as fake. Doing so, the discriminator learns a loss function which can be used to evaluate
the “realisticness” of a generated stack, which the generator can use to guide its training. Only the discriminator weights are
updated during this step (generator weights are held fixed).



networks seeking to minimize their respective loss functions –
hence the term “adversarial” in the name of the network. Note
however that the discriminator is not updated following every
generator update. The discriminator is only updated when the
discriminator loss is greater than some threshold, which allows
the generator (which is harder to train) to catch up to the
discriminator and otherwise resulted in a failure to converge.
The entire network was trained end-to-end with the Adam
optimization algorithm for 100 epochs using a learning rate
parameter of 10−5 on 4 NVIDIA P40 GPUs in parallel. The
weights from the epoch with least validation loss were selected
to evaluate on the test set.

To evaluate the outputs of the network, the PSNR (in dB)
metric was used to evaluate the DNN images produced while
Dice Similarity Coefficient (DSC) metric was used to evaluate
the DNN segmentations.

A. Network Architecture Variations

Neural networks with various architectures based on Figs.
1 and 2 were trained to answer the following questions:

1) Does feature sharing help? Are better results obtained
with a single encoder-decoder being used to produce
both the DNN image and the DNN segmentation (ex-
actly as in Fig. 1), or should two separate encoder-
decoder blocks be used – one for each output? To answer
these questions, networks were trained with both a single
encoder-decoder block, as well as with two encoder-
decoder blocks.

2) How much does the presence of the discriminator help?
To answer this, we also trained the architecture giving
no contribution to the discriminator’s loss term when
training the generator (i.e., when changing the weight
for the discriminator’s loss term from 0.05, as in Fig. 2,
to 0).

Answering each question yields two variations. Therefore, four
types of neural network architectures were trained in total: (1)
an architecture with feature sharing and with discriminative
loss, (2) an architecture without feature sharing and with
discriminative loss, (3) an architecture with feature sharing
and without discriminative loss, and (4) an architecture without
feature sharing and without discriminative loss.

III. RESULTS & DISCUSSION

A. Simulation Results

The four trained architectures (single encoder-decoder with
discriminator, two encoder-decoders with discriminator, single
encoder-decoder without discriminator, two encoder-decoders
without discriminator) were tested on the simulated test set,
with mean ± one standard deviation (PSNR (dB), DSC) scores
of (29.38±0.92, 0.908±0.076), (28.86.±1.10, 0.906±0.086),
(29.42±1.14, 0.901±0.138) and (28.35±1.53, 0.895±0.143),
respectively.

Fig. 3 shows example images from different stages of
the neural network pipeline for a simulated test example.
Specifically, the results presented in Fig. 3 correspond to an
architecture with a single encoder-decoder and a discriminator.

The raw simulated RF channel data is input into the encoder-
decoder part of the generator, producing a DNN image trained
to match the reference DAS image provided, and a DNN
segmentation trained to match the true segmentation. The
specific outputs presented here yield a (PSNR (dB), DSC)
score of (29.65, 0.962).

Fig. 4 shows DSC variation as a function of radius (r), and a
clear trend is shared by the four architectures with performance
increasing monotonically from an overall average (averaged
over the four architectures) DSC score of 0.595 for 2 mm
radii cysts to 0.975 for 8 mm radii cysts. Between the four
networks, the presence of the discriminator appears to be the
major distinguishing factor, greatly aiding the segmentation
of small cysts – the 2 networks with a discriminator have a
mean DSC score of 0.697 for 2mm radii cysts, as compared
to a mean DSC score of 0.492 for the networks without a
discriminator.

There is no clear trend for network performance variation
with respect to the speed of sound (c), nor with respect to axial
position of cyst center (z) and lateral position of cyst center
(x). There is a subtle trend with respect to intrinsic contrasts,
as the DSC scores of the four networks appear to degrade as
intrinsic contrast increases from anechoic (−∞) to −6 dB.

Studying PSNR variation as a function of radius (r) in Fig.
4, it is observed that the networks with feature sharing ı.e. a
single encoder-decoder block perform better than the networks
without feature sharing. In particular, higher PSNR scores
of 29.38 dB and 29.42 dB were obtained for the network
with a single encoder-decoder and a discriminator and for the
network with a single encoder-decoder and no discriminator,
respectively, when compared to PSNR scores of 28.86 dB and
28.35 dB for the network with two encoder-decoders and a
discriminator and for the network with two encoder-decoders
and no discriminator, respectively. There does not appear to be
a clear trend for network performance variation with respect
to the other parameters of the simulation.

B. Phantom Results

Fig. 5 shows data from an elevational slice of an anechoic
and a -6dB hypoechoic cylinder at a depth of 40 mm in a
CIRS 054GS phantom imaged to test if our networks trained
exclusively on simulated data generalized to experimental
phantom data. Specifically, the outputs returned by the single
encoder-decoder with discriminator architecture are shown in
Fig. 5. The (PSNR (dB), DSC) scores of the four networks
for the phantom slice were (14.86, 0.79), (14.95, 0.75),
(15.06, 0.62) and (15.05, 0.49), respectively. While the PSNR
scores are similar across the four network architectures, it is
observed that DSC score is greatly improved by the presence
of the discriminator and to a lesser extent feature sharing,
showcasing the importance of the GAN framework in learning
representations that generalize well.

C. Training with discriminator loss alone

As an experiment, the weights for the L1Loss and DSC Loss
terms were set to 0 (instead of 1 as in Fig. 1) and the network



Fig. 3: Results from a simulated example. Simulated RF channel data is beamformed to obtain a DAS B-mode ultrasound
image, presented alongside the DNN B-mode image produced by our network. In addition, the true segmentation of the cyst
from surrounding tissue is presented with the DNN segmentation predicted by our network. Both DNN outputs are close to
their reference images, yielding a (PSNR (dB), DSC) score of (29.65, 0.962).

Fig. 4: Network performance with the simulated test dataset. Cyst radius (r), speed of sound (c), intrinsic cyst contrast, axial
position of cyst center (z), and lateral position of cyst center (x) were varied in turn aggregating over the other parameters.
Results show the mean Dice similarity coefficient (DSC) and Peak Signal-to-Noise Ratio (PSNR) with error bars showing ±
one standard deviation.

Fig. 5: Results from a phantom example. RF channel data of an elevational slice of an anechoic and -6 dB hypoechoic cylinder
in a CIRS 054GS phantom is beamformed to obtain a DAS B-mode ultrasound image, presented alongside the DNN B-mode
image produced by our network. In addition, the true segmentation of the cyst from surrounding tissue is presented with the
DNN segmentation predicted by our network. Both DNN outputs are close to their reference images, yielding a (PSNR (dB),
DSC) score of (14.86, 0.79).

was trained using only the “realism” loss provided by the
discriminator. Using only the “realism” loss provided by the
discriminator proved insufficient – a mean (PSNR (dB),DSC)
score of just (21.75, 0.45) was obtained on the validation
set. This result highlights the need for stronger supervision,

provided by the L1Loss and the DSC Loss, when training
a GAN to guide the weights into a good initial region by
ensuring the output DNN image and DNN segmentation are
close to the DAS B-mode and true segmentation.



D. Training with discriminator loss alone and without ap-
pending RF Channel data to the input stacks

We were interested in studying the representations learned
if RF channel data was excluded from the stacks fed into
the discriminator, and through this glean insight into how the
discriminator uses the RF channel data to decide if a stack
is real (beamformed) or fake (DNN). We hypothesized that
failing to provide RF channel data would result in the dis-
criminator not learning the correspondences between a given
RF channel data and its B-mode image and segmentation,
instead only learning if a B-mode image and its associated
segmentation are a realistic pair or not. The easiest way to
spoof such a discriminator would be to generate a single DNN
B-Mode image and its corresponding segmentation, regardless
of the input. This is a problem that often plagues GANs and
is called mode collapse [26]. Experimentally, this is exactly
what occurs. The generator produced a single DNN image and
a single DNN segmentation, regardless of the RF channel data
fed into the generator.

IV. CONCLUSION

A generative adversarial neural network (GAN) was trained
to extract information directly from raw RF channel data
created from a single plane wave transmission with no receive
delays applied. The GAN produced two outputs: (1) a DNN
B-mode image trained to mimic DAS B-mode imaging and (2)
a DNN segmentation that matched the true segmentation of a
cyst from surrounding tissue. In addition, the efficacy of fea-
ture sharing and the discriminative loss were studied in great
detail. The trained networks were successfully transferred to
experimental data after exclusive training on simulated cysts.
This work demonstrates the promise that deep learning holds
as an alternative to the traditional ultrasound image formation
(i.e., beamforming) and image segmentation process.
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