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Abstract—Catheter guidance is typically performed with fluo-
roscopy, which requires patient and operator exposure to ionizing
radiation. Our group is exploring robotic photoacoustic imaging
as an alternative to fluoroscopy to track catheter tips. However,
the catheter tip segmentation step in the photoacoustic-based
robotic visual servoing algorithm is limited by the presence of
confusing photoacoustic artifacts. We previously demonstrated
that a deep neural network is capable of detecting photoacoustic
sources in the presence of artifacts in simulated, phantom, and
in vivo data. This paper directly compares the in vivo results
obtained with linear and phased ultrasound receiver arrays.
Two convolutional neural networks (CNNs) were trained to
detect point sources in simulated photoacoustic channel data
and tested with in vivo images from a swine catheterization
procedure. The CNN trained with a linear array receiver model
correctly classified 88.8% of sources, and the CNN trained with a
phased array receiver model correctly classified 91.4% of sources.
These results demonstrate that a deep learning approach to
photoacoustic image formation is capable of detecting catheter
tips during interventional procedures. Therefore, the proposed
approach is a promising replacement to the segmentation step in
photoacoustic-based robotic visual servoing algorithms.

I. INTRODUCTION

Catheter guidance is often used in cardiac interventions,
with catheter tip visualization provided by fluoroscopy. How-
ever, fluoroscopy requires ionizing radiation and lacks depth
information within the planar projection images. Photoacoustic
imaging coupled with robotic visual servoing is an alternative
which does not require ionizing radiation [1]. Photoacoustic
imaging is implemented by sending laser pulses through an
optical fiber that is housed inside the cardiac catheter, which
generates a photoacoustic effect at the catheter tip (i.e., light
is converted to sound), and the resulting sound is received by
an ultrasound transducer array [2], [3].

To implement visual servoing, point-like photoacoustic sig-
nals generated at the catheter tip are segmented and the posi-
tions of the segmented signals are used to command a robot
that is holding an ultrasound transducer to keep it centered
on the photoacoustic signal at all times [1]. This approach is
beneficial for freeing the hands of operators from both holding
an ultrasound transducer and searching for the photoacoustic
signal associated with the catheter tip. One additional benefit
is that a global reference frame for catheter tip positions can
be provided when the external ultrasound transducer (used to

receive the photoacoustic images) is affixed to the end effector
of a robotic arm.

Despite these major benefits, one challenge that we have
encountered with photoacoustic-based visual servoing is that
the segmentation algorithms that enable visual servoing are
highly susceptible to artifacts and noise in the images that are
used to guide the robot to its next position. Therefore, we
propose to apply our novel deep learning photoacoustic point
source detection technique [4], [5] to identify catheter tips in
the presence of these problematic artifacts in raw channel data,
prior to implementing the beamforming step that is currently
needed to form photoacoustic images.

II. METHODS

Two independent convolutional neural networks (CNNs)
were trained with simulated data created with the k-Wave [6]
acoustic simulation package. One CNN was trained with a
dataset corresponding to linear array [7] and the second CNN
was trained with a dataset corresponding to a phased array
[8]. The k-Wave [6] simulation software was used to create
photoacoustic channel data from point sources and reflection
artifacts that can be confused for photoacoustic sources after
beamforming. The goal of the training step was to locate true
point sources and differentiate them from reflection artifacts.

Images of the raw photoacoustic channel data that were used
for training contained one source and one reflection artifact
after varying medium sound speeds, target locations, and noise
levels. Each CNN was trained using the Faster Region-based
CNN algorithm [9] Resnet-101 [10] architecture to identify
source and reflection artifacts in the channel data for 4,000
simulated test images per transducer architecture.

The trained networks were then transferred to in vivo data
acquired while guiding a catheter through a swine femoral
vein. This in vivo experiment was performed with approval
from the Johns Hopkins University Animal Care and Use
Committee. A total of 279 and 140 images were acquired with
the linear array and phased array transducers, respectively.

III. RESULTS

Fig. 1 shows the results of testing each trained network on
simulated and in vivo data. The linear array network correctly
classified 99.1% and 88.8% of sources for the simulated and in
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vivo datasets, respectively. The phased array network correctly
classified 84.3% and 91.4% of sources in the simulated and
in vivo datasets, respectively. These high classification rates
show that a deep network trained with only simulated data
can transfer knowledge from the simulated domain to in vivo
images with no additional training. In addition, these networks
are suitable for eliminating artifacts as all networks produced

Fig. 1: Classification results for the linear and phased array
networks where dark blue bars indicate classification rate,
light blue bars indicate misclassification rate, and yellow bars
indicate missed detection rate.

less than 2-7.9% misclassification rate in all test sets.
Fig. 2 shows channel data, delay-and-sum (DAS) images,

CNN-based images, and network detections overlaid on DAS
images. The size of the overlaid circle in the CNN-based and
overlay images is proportional to the mean absolute error of
the network. The mean absolute error of the network was 0.279
mm and 0.478 mm for the linear and phased array results,
respectively. The red boxes in the DAS images highlight the
regions zoomed in regions presented in the overlaid DAS and
CNN images. This overlay allows us to compare the DAS
brightness image to the detected locations generated by the
network, which are shown in yellow.

IV. DISCUSSION & CONCLUSION

Deep learning is a promising approach to detect point-like
sources in photoacoustic images. The approach is applicable
to multiple transducer arrays, including linear and phased
arrays. In both cases classification rates exceed 84% and mis-
classification rates are below 7.9%. Therefore, the proposed
technique is well suited for the task of detecting sources and
eliminating artifacts seen in photoacoustic images obtained
with both linear and phased arrays.

These results demonstrate the feasibility of replacing the
segmentation step in visual servoing with a CNN-based ap-
proach to image formation. While results are beneficial for

Fig. 2: (a,e) Channel data, (b,f) delay-and-sum (DAS) images, (c,g) CNN-based images, and (d,h) overlaid DAS and CNN
images obtained with the (a)-(d) linear array and (e)-(h) phased array transducers. Both examples contain one source signal
emanating from an optical fiber embedded in a cardiac catheter, which was imaged in the femoral vein of a swine. The DAS
images contain a red box which indicates the region where the source is located. A zoomed-in version of this region is used
to overlay the corresponding region from the CNN-based image, wherein the source location is shown in yellow.



guiding cardiac catheters, there are other types of catheteriza-
tion and interventional procedures that have the potential to
benefit from this approach.
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