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ABSTRACT

Photoacoustic imaging utilizes light and sound to make images by transmitting laser pulses that illuminate
regions of interest, which subsequently absorb the light, causing thermal expansion and the generation of sound
waves that are detected with conventional ultrasound transducers. The Photoacoustic and Ultrasonic Systems
Engineering (PULSE) Lab is developing novel methods that use photoacoustic imaging to guide surgeries with
the ultimate goal of eliminating surgical complications caused by injury to important structures like major blood
vessels and nerves that are otherwise hidden from a surgeons immediate view. This paper summarizes our recent
work to learn from the physics of sound propagation in tissue and develop acoustic beamforming algorithms that
improve image quality, using state-of-the-art deep learning methods. These deep learning methods hold promise
for robotic tracking tasks, visualization and visual servoing of surgical tool tips, and assessment of relative
distances between the surgical tool and nearby critical structures (e.g., major blood vessels and nerves that if
injured will cause severe complications, paralysis, or patient death). Impacted surgeries and procedures include
neurosurgery, spinal fusion surgery, hysterectomies, and biopsies.

1. INTRODUCTION

Photoacoustic imaging is an emerging medical imaging modality that uses light and sound to make images.1–3

Light is transmitted to the body, and structures with higher optical absorption than surrounding tissue (e.g.,
blood vessels) preferentially absorb this light. Optical absorption leads to thermal expansion and contraction,
which generates ultrasound waves that can be detected with conventional ultrasound transducers. This emerging
technique has great potential to guide surgeries by avoiding accidental injury to major blood vessels, which is
one active area of research for the Photoacoustic and Ultrasonic Systems Engineering (PULSE) Lab.4–8 We have
also shown that this imaging technique can be used to target desired blood-rich regions, such as the cancellous
core of pedicles during spinal fusion surgeries.9

One of the most outstanding challenges with photoacoustic images is the presence of artifacts that severely
degrade image quality. Several groups have explored approaches to mitigate these artifacts, including wavelength-
dependent techniques,10 motion-based methods,11,12 frequency-based methods,13,14 techniques using singular
value decomposition,15 photoacoustic-guided focused ultrasound (PAFUSion),15–17 and short-lag spatial coher-
ence.18–20 Limitations of these methods include minimal potential to remove artifacts caused by bright acoustic
reflections, assumptions of identical acoustic reception pathways, reduced frame rates, and the lack of compen-
sation for potential inter- and intrapatient variability.

Our group previously demonstrated that a deep learning approach can be trained with simulated data to
detect photoacoustic point sources,21–25 including photoacoustic signals originating from an optical fiber tip
housed in a needle surrounded by water,22–24 a needle surrounded by ex vivo tissue,25 and a cardiac catheter
located in an in vivo femoral vein.25 Our previous work also demonstrates the importance of correctly modeling
the ultrasound receiver when implementing deep learning to detect photoacoustic sources and remove reflection
artifacts.23 This paper summarizes our results obtained across multiple deep neural network architectures,
transducer receiver models, and simulation and experimental datasets that were not included during training.
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2. METHODS

The overall goal of the proposed approach is to learn the unique shape-to-depth relationship of point-like
photoacoustic sources in order to provide a deep learning-based replacement to common photoacoustic image
formation steps, as illustrated in Fig. 1 (top). We tested several convolutional neural networks (CNNs) to
achieve this goal. For each network, we first trained CNNs with k-Wave26 simulated data of acoustic wavefronts
emanating from point-like sources. After this training step, CNNs that achieved greater than 90% source clas-
sification accuracy were transferred to real photoacoustic data. Initially our output was point source locations.
We later trained networks to output both source and artifact locations as well as classifications of the detected
wavefronts. These outputs are then displayed in an image format that we call CNN-based images, which show
detected point source locations and location error as an image, as shown in Fig. 1 (bottom).

The following four network architectures were trained in our previous work:

• AlexNet network architecture21,27

• Faster R-CNN architecture composed of a deep fully convolutional network (i.e., the VGG16 network
architecture28 and a Region Proposal Network29) and a Fast R-CNN detector,30 as illustrated in Fig.
1 (top),22–24 which was used within the Caffe framework.31 Faster R-CNN29 was also used within the
Detectron software32 with the VGG-16 network architecture25

• Faster R-CNN29 used within the Detectron software32 with Resnet-5033 (i.e., a residual network with 50
layers) replacing the VGG-16 architecture25

• Faster R-CNN29 used within the Detectron software32 with Resnet-10133 (i.e., a residual network with 101
layers) replacing the VGG-16 architecture25

The following six types of data were tested in our previous work:

1. k-Wave simulated data from point targets21,23,24

2. experimental data from a phantom containing a cylindrical rubber rod to mimic a blood vessel21

3. experimental data from a phantom containing brachytherapy seeds24

4. experimental data from a needle containing an optical fiber inserted in a water bath22,24

5. experimental data from a needle containing an optical fiber inserted in ex vivo tissues from a chicken breast,
bovine liver, steak, and whole chicken thigh containing bone25

6. experimental data from a cardiac catheter containing an optical fiber inserted in an in vivo porcine femoral
vein25

Figure 1: Example network architecture and example experimental images of channel data, beamformed data
and CNN-based images
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In some of these cases, two types of transducer models were implemented, with various noise levels, multiple
sources in a single recording, and multiple medium sound speeds. In this paper, we compare the performance
of each test set based on reported source classification, misclassification, and missed detection rates, as well
as distance error of correct detections. Whenever possible, artifact classification, misclassification, and missed
detection rates as well as precision, recall, and area under the curve were also reported, but these metrics are
omitted from this paper. More details regarding our training and validation methods, training and validation
test sets, and experimental imaging equipment are available in the papers cited above.

3. RESULTS

Table 1 summarizes many of the major results reported in our previous publications. Although many of our
papers report results from both training and validation datasets, the results in Table 1 are reported for test
datasets only, with the exception of the simulation results for the Resnet50 and Resnet101 architectures, which
report validation dataset results. The number of images included in each grouping of datasets, as well as the
source classification, misclassification, and missed detection rates are reported. Where available, the mean axial
and lateral errors are additionally reported. The entries reported as not applicable (i.e., N/A) are absent because
the AlexNet architecture does not classify objects, thus this network does not output classification results that
can be used to calculate classification, misclassification, and missed detection rates. The blank entries (i.e., -),
are absent because there was no ground truth to assess distance errors in ex vivo and in vivo datasets.

Overall, the classification rates ranged from 92-99.62% for simulated data, and the greatest classification per-
formance with simulated data was achieved with the network architecture that included Resnet101. Similarly, for
simulated data, the lowest misclassification rate (0.28%) was also achieved with Resnet101. Similar performance
was achieved with the experimental water bath and phantom data when using the Faster R-CNN architecture
with the plain VGG16 convolutional neural network. This success demonstrates two major breakthroughs for the
field of deep learning applied to photoacoustic image formation. First, simulations of acoustic wave propagation
can be used to successfully train deep neural networks. Second these networks transfer well to experimental data
that were not included during training.

Table 1: Summary of Deep Learning Results Obtained with Multiple Networks and Datasets

# of
Images
Tested

Classification
Rate

Misclassification
Rate

Missed
Detection

Rate

Mean
Axial
Error
(mm)

Mean
Lateral
Error
(mm)

AlexNet
Simulated21 2,412 N/A N/A N/A 0.28 0.37
Vessel Phantom21 1 N/A N/A N/A 2 2
Faster R-CNN - VGG16
Simulated - Continuous,
1 source, multiple noise levels23,24

3,998 97% 15% <0.7% 0.12 0.20

Simulated - Discrete,
1 source, multiple noise levels23,24

3,998 92% 11% <0.7% 0.12 0.17

Water bath - Discrete24 17 100% 0% 0% 0.24 0.27
Brachytherapy Phantom
(only results in training range)24

15 97% 3% 3% <0.38 <0.38

Ex Vivo Tissue25 82 84-100% 0-23.5% 0-16% - -
In Vivo25 279 14.5% <2% 85.5% - -
Faster R-CNN - Resnet50
Simulated (validation dataset) 3,998 97.93% 0.38% 2.08% 0.101 0.097
Ex Vivo Tissue25 82 71-100% 0% 0-29% - -
In Vivo25 279 83% <2% <15.9% - -
Faster R-CNN - Resnet101
Simulated (validation dataset) 3,998 99.62% 0.28% 0.9% 0.103 0.088
Ex Vivo Tissue25 82 65-100% 0% 0-35% - -
In Vivo25 279 89% <2% <15.9% - -
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After achieving success with simulated and experimental phantom data, these networks were then tested
with data from ex vivo and in vivo tissue. The initial network with the VGG16 architecture did not perform as
well on these ex vivo and in vivo datasets, as reported in Table 1. However, performance increased when the
VGG16 architecture was replaced with a residual network architecture. In particular, classification rates with
the residual networks ranged from 83-89% for the in vivo data and the misclassification rates were <2%, while
the missed detection rates were <15.9%. The majority of the ex vivo datasets experienced similar performance,
with the exception of steak tissue,25 which produced significantly more artifacts than the other ex vivo tissues
that were tested. These artifacts and results from the ex vivo steak images were solely responsible for the lower
classification rates of 65-71% that are reported in Table 1 for the ex vivo tissue.25

With the exception of AlexNet applied to experimental data, the remaining network architectures and datasets
produced submillimeter axial and lateral target location errors. We relate these location errors to the resolution
of our deep learning-based imaging system, where resolution is defined as an integer multiple of (i.e., typically 2
or 3 times) the location errors.24,25 Based on this relationship, the CNN-based images have promising potential
to provide better resolution than traditional beamformed images, particularly as image depth increases. We have
shown this for image depths as deep as 10 cm with experimental target depths of approximately 6-8 cm.25

4. DISCUSSION

Our recent series of publications demonstrate the power and potential of using deep learning to fundamentally
reconsider traditional approaches to photoacoustic image formation. Early success with deep learning alterna-
tives have proven to be promising with classification rates that exceed 80% in most cases from a variety of
datasets. These datasets span simulated and more importantly experimental data (including in vivo data from a
pig catheterization procedure). The results of the point source location errors also demonstrate that this funda-
mentally new approach has the potential to rival spatial resolution measurements from traditional photoacoustic
image formation procedures, particularly as depth increases. Our trained code and a few of our datasets are
freely available to enable future comparisons.34

In addition to improving photoacoustic image quality with deep learning approaches, we are also pioneering
similar deep learning concepts to improve ultrasound image quality.35,36 These ultrasound-based deep learning
approaches will inherently benefit photoacoustic imaging because ultrasound images are typically needed to
provide anatomical context for interventional photoacoustic images. Current ultrasound imaging methods suffer
from similar challenges with acoustic clutter and poor image quality37 that can potentially be overcome with
similar deep learning alternatives to ultrasound image formation. The proposed method applied to photoacoustic
images can then be overlaid on traditional ultrasound and/or photoacoustic images.

5. CONCLUSION

This paper summarizes the most recent results of PULSE Lab’s research efforts to apply deep learning to
detect photoacoustic point sources and mitigate problematic photoacoustic artifacts, with the added advantage
of improving photoacoustic image resolution. Our CNN-based images can be displayed independently or overlaid
on traditional beamformed images. Many possibilities lie ahead to integrate deep learning with photoacoustic
image formation for interventional guidance of surgical procedures.
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