
Clinical Feasibility of Coherence-Based Beamforming to Distinguish
Solid from Fluid Hypoechoic Breast Masses

Alycen Wiacek∗, Eniola Falomo†, Kelly Myers†, Ole Marius Hoel Rindal‡, Kelly Fabrega-Foster†,
Susan Harvey† and Muyinatu A. Lediju Bell∗§¶

∗Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
†Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD

‡Department of Informatics, University of Oslo, Oslo, Norway
§Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
¶Department of Computer Science, Johns Hopkins University, Baltimore, MD

Abstract—Ultrasound imaging is often used in conjunction
with mammography, particularly for patients with dense breast
tissue, which causes an increased amount of acoustic clutter,
obscuring lesions of interest, and contributing to the false
positive rate of breast ultrasound. Coherence-based imaging
methods, such as short-lag spatial coherence (SLSC) and robust
short-lag spatial coherence (R-SLSC), display the coherence of
backscattered ultrasound signals instead of their amplitude or
brightness information, which offers opportunities to reduce
acoustic clutter. This paper focuses on SLSC and R-SLSC
beamforming applied to three in vivo masses in the female
breast: (1) cyst, (2) fibroadenoma, and (3) ductal carcinoma
in situ (DCIS). Contrast is improved by up to 7.8 dB with
SLSC imaging and 4.86 dB with R-SLSC imaging in fluid-
filled regions. However, contrast is degraded in coherence-based
images of solid hypoechoic lesions because coherence is displayed
in these regions with pathologically determined solid content.
This interesting finding indicates the potential of coherence-based
imaging to assist with the differentiation between solid and fluid-
filled hypoechoic breast masses. Examples of duplex mode B-
mode and R-SLSC images are shown to convey clinical potential.

I. INTRODUCTION

Breast cancer is the leading cause of cancer death for
women in the world; over 600,000 women are predicted
to die from the disease in 2018 [1]. Breast ultrasound is
widely used as a diagnostic supplement to mammography
and has been shown to detect additional cancers previously
undetected with mammography [2]. Ultrasound imaging is
particularly beneficial in patients with dense breast tissue,
where mammographic sensitivity is significantly deteriorated
[3]. In the ACRIN 6666 trial specifically, more false positives
were seen in ultrasound with increasing breast density (10%
false positives with ≤25% density steadily increasing to 14.4%
false positives with breast density >80%) [4]. This trend is
indicative of the acoustic interactions between dense breast
tissue that cause phase aberrations and acoustic clutter [5], [6].
Advanced beamforming techniques aimed at reducing clutter
in ultrasound images or measuring additional properties of
tissue are particularly well suited for clinical application [7],
[8]. These techniques have potential to reduce the number of
false positives obtained with breast ultrasound imaging

In particular, short-lag spatial coherence (SLSC) [9] and
robust short-lag spatial coherence (R-SLSC) [10] are two

advanced beamforming techniques that have potential to re-
duce acoustic clutter and improve breast ultrasound image
quality. Since its introduction as a clutter reduction technique,
SLSC has been applied to a variety of in vivo tissue types
including thyroid [9], cardiac [11], fetal [12], [13], and liver
[14]. Similarly, R-SLSC has been demonstrated with in vivo
liver tissue [10]. This technique improves SLSC imaging by
denoising the sparse information present at larger lags. Both
SLSC and R-SLSC imaging take advantage of the similarity
of backscattered pressure waves and are therefore more robust
against clutter and other noise sources, making them uniquely
suited for breast ultrasound imaging. In this paper, we explore
SLSC and R-SLSC beamforming applied to three specific in
vivo lesions in the human breast: cyst, fibroadenoma, and
ductual carcinoma in situ (DCIS).

II. METHODS

Three patients were enrolled in our ongoing study after in-
formed consent and approval from the Johns Hopkins Medical
Institutions (protocol number IRB00127110). Each patient was
scanned using an Alpinion ECUBE12R research ultrasound
scanner (Alpinion, Seoul, Korea) connected to an Alpinion
L8-17 or Alpinion L3-8 with center frequencies of 12.5MHz
and 8MHz, respectively and a sampling frequency of 40MHz.
Each lesion was insonified using 256 focused transmissions
with a focus as selected by our trained radiologist co-authors.

Contrast, signal-to-noise ratio (SNR), and contrast-to-noise
ratio (CNR) were measured and compared across matched
B-mode and coherence-based images created with the same
channel data according to the following equations:
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where Si and σi are the mean and standard deviation, respec-
tively, within a region of interest (ROI) inside of the target
prior to log-compression and So and σo are the mean and



standard deviation, respectively, of a region of interest outside
of the target prior to log-compression.

A. Coherence-Based Beamforming
1) Short-Lag Spatial Coherence (SLSC): SLSC relies on

the spatial coherence of backscattered pressure waves received
across the ultrasound transducer. After standard receive delays,
normalized correlations are calculated between equally spaced
elements, or lags, resulting in the normalized spatial correla-
tion:
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where N is the number of elements in the transducer, m is
the lag, si(n) is a time-delayed, zero-mean signal received at
element i from depth n.

The resulting spatial coherence function is then summed
up to a specific short-lag value, M , yielding the value of the
SLSC pixel.

Rsl =

∫ M

1

R̂(m)dm ≈
M∑

m=1

R̂(m) (5)

This process is repeated for each lateral and axial position
in the image, typically with an axial correlation kernel of size
k = n2 − n1 [15]. Throughout this work, a kernel of 1.56
times the wavelength associated with the center frequency of
the probe was taken.

2) Robust Short-Lag Spatial Coherence (R-SLSC): R-SLSC
beamforming improves the original SLSC algorithm by re-
moving outliers in the coherence information. First, each lag
image (generated with the SLSC algorithm described above)
is vectorized and stacked. This matrix, D, contains the noisy
lag images. In order to remove outliers, robust principal
component analysis (RPCA) is performed on the noisy D
matrix, deriving a solution based on the expression:

D = A+ E (6)

where A is the underlying low-rank matrix, or the denoised
coherence information, and E is the sparse error matrix. This
expression can be arranged to solve for A using a convex
relaxation and the Augmented Lagrange Multiplier (ALM)
method implemented by [16]:

L(A,E, Y, µ) = ||A||∗ + λ||E||1 + 〈Y,D −A− E〉

+
µ

2
||D −A− E||2F

(7)

where Y is a matrix of Lagrange multipliers, λ is the sparsity
penalty parameter that is varied to smooth tissue texture, µ is
a positive scalar, || · ||1 is the L1 norm, || · ||F is the Frobenius
norm, and || · ||∗ is the nuclear norm.

After the application of RPCA, the denoised matrix, A is
then weighted according to a linearly decreasing weighting
scheme, where the lag 1 image is given a weight of 1 down
to the lag M image given a weight of 1

M . After weighting,
the vectorization is reversed to form the final R-SLSC image.

B. Sparsity Parameter

There are two parameters of importance in selecting an R-
SLSC image for display, namely the short-lag value, M , and
the sparsity parameter, λ, as shown in Eq. 7. As demonstrated
previously [9], [15], increasing the short-lag value, improves
lateral resolution. Varying the sparsity parameter λ, changes
the penalty for sparsity within Eq. 7 and therefore affects
the level of smoothing applied to the tissue texture [10]. We
use this parameter to tune the tissue SNR to quantitatively
match that of the corresponding B-mode image. The specific
combination of M and λ values are chosen to both match the
B-mode SNR and provide the greatest lesion contrast when
there are multiple SNR matches.

III. RESULTS

A. Cyst

Fig. 1 shows a fluid-filled cyst, which is a benign mass.
The B-mode image in Fig. 1a presents as hypoechoic with
possible acoustic clutter near the top of the mass. When SLSC
beamforming is applied (M = 5 as shown in Fig. 1b), the
borders are better defined than in Fig. 1a and the acoustic
clutter from the bottom of the mass is removed. The top of the
mass contains unexpected coherence. Despite this unexpected
coherence, when an ROI is taken filling the majority of the
mass, the contrast is significantly improved when compared to
the B-mode ultrasound image.

Similarly, contrast is improved in the R-SLSC image of
Fig. 1c, which is displayed with M = 20 and λ = 1. The
inclusion of additional lags results in higher resolution, evident
when comparing the blurred edges of the mass in Fig. 1b to
the more distinct edges of the mass in Fig. 1c. In addition,
the tissue texture surrounding the mass is smoothed, resulting
in improved contrast compared to the B-mode image. The
contrast in the B-mode image is −13.64 dB, the contrast in the
SLSC image (M = 5) is −21.44 dB, and the contrast in the
R-SLSC image is −18.50 dB. We achieved an improvement of
7.8 dB when comparing the B-mode image to the SLSC image
at M = 5, and an improvement of 4.86 dB when comparing
the B-mode image to the R-SLSC image (M = 20, λ = 1).
By tuning the sparsity parameter, λ, the SNR of the R-SLSC

Fig. 1: B-mode (a), SLSC (b), and R-SLSC (c) images of an
in vivo cyst in a female breast. Images are displayed with 60
dB dynamic range.



image and the speckle SNR of the B-mode image are both
1.6.

B. Fibroadenoma

Fig. 2 shows images of a fibroadenoma in the female
breast. Fibroadenomas are benign solid masses that typically
present as hypoechoic on ultrasound images [17], [18]. The B-
mode image in Fig. 2a shows the mass as hypoechoic. Upon
application of SLSC beamforming, Fig. 2b is displayed with
short-lag value M = 5 and shows a significant amount of
coherence within the mass, indicative its solid tissue content.
When R-SLSC beamforming is applied and the coherence
outliers are removed, (see Fig. 2c which is displayed with
M = 20 and λ = 1), the borders of the mass become better
distinguished indicating higher resolution than in Fig. 2b due
to the inclusion of additional lags.

The contrast of the B-mode image is expected to be better
than that of the SLSC image in this case, given the hypoechoic
echogenicity of the mass when displaying signal amplitudes
in the B-mode image and the “isocoherent” nature of the mass
when displaying coherence values in the SLSC images. The
contrast for the B-mode, SLSC and R-SLSC images is -14.98
dB, -2.12 dB, and -1.8 dB respectively. Finally, the R-SLSC
image parameters are selected to match the B-mode speckle
SNR at 1.37.

C. Ductal Carcinoma In Situ

Fig. 3 shows a ductal carcinoma in situ (DCIS) in the
in vivo female breast, identified at core biopsy. When DCIS

Fig. 2: B-mode (a), SLSC (b), and R-SLSC (c) images of an
in vivo fibroadenoma in a female breast. Images are displayed
with 60 dB dynamic range.

Fig. 3: B-mode (a), SLSC (b), and R-SLSC (c) images of an
in vivo ductal carcinoma in sito (DCIS) in a female breast.
Images are displayed with 60 dB dynamic range.

presents as a mass, it is typically an ill-dened hypoechoic
mass, often with microlobulations and internal echoes [19].
The B-mode image in Fig. 3a follows these typical trends,
with distinct but irregular margins of the hypoechoic structure.
The SLSC image (shown in Fig. 3b with M = 5) similarly
has distinct boundaries, but the boundaries are blurred, in-
dicating lower resolution. One option to improve resolution
is to include additional lags in the short-lag sum. R-SLSC
beamfoming allows these additional lags to be considered
with the additional option to tune the sparsity parameter, λ.
The R-SLSC image in Fig. 3c is displayed with M = 20
and λ = 0.7, which enables the tissue SNR of the R-SLSC
image to match the speckle SNR of the B-mode image. This
modification improves resolution due to the additional lags
included, demonstrated by the sharper defined edges in Fig.
3c than in Fig. 3b.

The contrast of the B-mode image is -1.97 dB, while the
contrast of the SLSC and R-SLSC images is 0.83 dB and 0.75
dB, respectively. The poorer contrast in the SLSC and R-SLSC
images when compared to the B-mode image correlates with
the solid content of the mass. The solid content is evident as
the coherent signal inside of the mass. The SNR of the B-
mode, SLSC, and R-SLSC images are 1.32, 1.74, and 1.37,
respectively.

D. Duplex Mode Display

Fig. 4 shows an example of a potential clinical overlay
method that can be used in conjuction with traditional B-mode
imaging to differentiate fluid-filled from solid masses. The
R-SLSC images of the masses in Figs. 1 to 3 are overlaid
on their corresponding B-mode images. Both the B-mode
and the overlaid R-SLSC information are displayed with 60
dB dynamic range, with the B-mode remaining in grayscale
and the R-SLSC image displayed on a colormap where red
indicates high coherence and blue indicates low coherence.

The differences between solid and fluid-filled masses are
evident, where Fig. 4a shows the fluid-filled cyst, which
presents as largely blue in the R-SLSC overlay. Figs. 4b and 4c
show the fibroadenoma and DCIS, respectively, and are almost
completely red, which is indicative of their solid content.

Fig. 4: Example of R-SLSC displayed in duplex mode overlaid
on the B-mode image of a cyst (a), fibroadenoma (b), and
ductal carcinoma in situ (DCIS) (c). All images, including the
overlay are displayed with 60 dB dynamic range.



IV. DISCUSSION

We demonstrated that coherence-based beamforming meth-
ods offer improved differentiation between fluid-filled and
solid, hypoechoic breast masses based on the coherence infor-
mation present inside of each mass type. The B-mode images
of the cyst, fibroadenoma, and the DCIS shown in Figs. 1a, 2a,
and 3a, respectively, are hypoechoic, with similar echogenicity
to each other. However, the presence of coherence inside of the
R-SLSC image of the two solid masses (i.e., the fibroadenoma,
Fig. 2c and the DCIS, Fig. 3c) distinguish them from the
fluid-filled cyst of Fig. 1c, which shows minimal coherence.
The coherence present at the top of the cyst (i.e., Fig. 1c) is
likely due to thicker fluid or debris present inside of the mass,
representative of a complicated cyst.

By displaying the coherence information in duplex mode
with our proposed approach, as shown in Fig. 4, radiologists
can potentially examine the mass using the standard clinical ul-
trasound imaging workflow, then switch to view the coherence
information once a suspicious mass is identified. With this
proposed duplex mode, radiologists can first examine tissue
features of interest, then engage the added benefits of R-SLSC
imaging when needed. These results are promising to extend
SLSC and R-SLSC imaging to assist in breast cancer diagno-
sis. This extension can be particularly beneficial in developing
countries where the resources to perform unnecessary biopsies
are scarce.

Computational complexity is one disadvantage of R-SLSC,
as the technique requires significantly greater processing times
than the original SLSC algorithm due to the RPCA step. This
computational complexity can be overcome through the block-
or patch-wise approach presented in [10].

V. CONCLUSION

This work is the first to demonstrate the ability of
coherence-based imaging methods, specifically SLSC and R-
SLSC, to differentiate between solid and fluid-filled hypoe-
choic breast masses based on the significant difference in
contrast and appearance between B-mode and R-SLSC images.
Results show promise for using coherence-based beamforming
to distinguish solid from fluid hypoechoic breast masses in the
clinic. This improvement in distinction can potentially help to
lower the false positive rate by allowing for a more definitive
diagnosis of benign cysts, reducing the number of biopsy
recommendations, and as a result reducing patient stress and
discomfort, and saving multiple resources in the healthcare
system.
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