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Abstract—The process of registering ultrasound (US) images
to computed tomography (CT) images relies on accurate segmen-
tation of bony structures in US images. However, segmentation
of US images often suffers from the presence of speckle noise,
clutter, and acoustic shadowing. We propose to improve the
US bone segmentation process with a novel Locally Weighted
SLSC (LW-SLSC) beamforming method, which is based on
the minimization of the total variation of a spatial coherence
weighted sum. Application of this beamformer to an ex vivo
human vertebra resulted in a 911% contrast-to-noise ratio (CNR)
increase in LW-SLSC images (CNR=23.66) when compared to
traditional delay-and-sum (DAS) images (CNR=2.34) created
from the same channel data. Application to an ex vivo caprine
vertebra with surrounding tissue intact similarly resulted in
a 55.8% CNR increase in the LW-SLSC images (CNR=2.01)
compared to DAS images (CNR=1.29) created from the same
channel data. Bone boundaries in the caprine vertebra were
segmented from the US and CT images, and the LW-SLSC
beamformer enabled approximately 5.5 mm thinner boundary
lines than the DAS beamformer when compared to segmentation
results based on CT images. Similarly, the location error of
boundary lines was also reduced with 70% of the total spa-
tial error within ±1 mm in LW-SLSC images compared to
47% in DAS images. These results demonstrate that LW-SLSC
imaging provides improved bone segmentation over traditional
DAS imaging, which has promising implications for real-time
segmentation of bone boundaries during spinal fusion surgeries
and other procedures that may benefit from accurate US-based
bone segmentation.

I. INTRODUCTION
In spinal fusion surgeries, x-ray fluoroscopy is frequently

used and correlated with preoperative computed tomography
(CT) images to reduce the risk of complications related to
pedicle screw misplacement [1]. Ultrasound (US) registration
to preoperative CT is one alternative to the ionizing radiation
of x-rays [2]. However, in order to address the noise and arti-
facts associated with US images, additional data and filtering
are typically required. For example, Wein et al. designed a
biomechanical model for simulated US backscattered signals
from CT volumetric data of soft tissues [3], which was later
registered to intraoperative volumetric US data from the liver
and kidney [4]. Gill et al. [5] simulated US volumes from
3D CT spine data in order to segment the posterior surface
of the vertebra and registered the data to ex vivo sheep
samples. Similarly, Brendel et al. [6] simulated US volumes
from 3D CT spine data and registered the simulated US
data to real US data of an ex vivo human spine. Filters are
additionally utilized in sophisticated registration procedures
based on multicomponent similarity measurements [7]. These

measurements require a combination of weighted mutual infor-
mation term, edge correlation, clamping the compressed skin
surface, and shadowing-related artifact removal to assess the
alignment between structures in US images and structures in
CT images [7].

Based on these examples, it is clear that the CT-US registra-
tion approaches for spinal fusion surgery require well-defined
bone structures in order to achieve accurate segmentation in
real time, and this requirement is currently achieved with
redundant information provided by 3D US volumetric data.
However, 3D segmentation is often computationally expensive
and requires custom hardware for feasible implementation. In
addition, depending on the angle of incidence of the US beams
to the vertebra, an adapted 3D CT surface must be simulated
in real time as well [2]. We hypothesize that improving
the bone boundary visualization in ultrasound images with
advanced beamforming techniques will benefit surgeons with
segmenting and registering 2D US images and reduce the
computational burden associated with requiring 3D images to
complete a segmentation task.

To explore this hypothesis, Short-Lag Spatial Coherence
(SLSC) [8] beamforming and a novel variation of SLSC
beamforming that we developed — i.e., Locally Weighted
SLSC (LW-SLSC) — were used as alternatives to conventional
delay-and-sum (DAS) beamforming to reduce speckle noise
and enhance bone boundaries. US and CT acquisitions were
conducted on an ex vivo human lumbar vertebra and an ex vivo
caprine thoracic section. Segmentation results in US images
created with the LW-SLSC beamformer were quantitatively
compared to segmentation results from co-registered CT im-
ages.

II. METHODS
A. Short Lag Spatial Coherence (SLSC)

SLSC beamforming displays the similarity of received sig-
nals in the aperture as a function of element separation m. A
received time-delayed sample in the aperture is represented as
si(n), where i is the channel index and n the depth index in
a zero-mean radio frequency signal si. First, the coherence
function R(m) is calculated using a small axial kernel as
defined by:
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where N is the the number of elements in the aperture, and n1
and n2 are the limits of the axial kernel. Then, an SLSC image
of lag M is generated as the integral of the spatial coherence
function over the first M lags:

SLSC(M) =

∫ M

1

R̂(m)dm ≈
M∑

m=1

R̂(m). (2)

SLSC images were computed with lag M = 8 and with an
axial kernel size equivalent to 1.2λ, where λ is the wavelength
associated with the center frequency of the transducer.

B. Locally Weighted Short Lag Spatial Coherence (LW-SLSC)

We hypothesize that additional enhancement of bone bound-
aries can be achieved by implementing a regularized version of
the SLSC beamforming. Instead of averaging the cumulative
sum up to a lag value M (out of a preselected total of NL

lags, where M> NL), LW-SLSC beamforming computes the
weighted coefficients for NL lags by minimizing the total
variation (TV) of the weighted sum within a moving kernel
of size kz x kx x NL. In order to preserve the high resolution
information available at higher lags (i.e. M>15), this adaptive
solution is regularized using the L2-norm with a gradient
operator, defined as:

ŵi = argmin{TV(wiKi) + α‖∇wi‖2}, (3)

where TV is the total variation function applied to the cost
function, Ki is the kernel i of the correlation matrix R̂, and
wi (1 x NL) is the optimized weight vector for the calculated
summed lags of Ki. The main advantage of the LW-SLSC
relies on the adaptive selection of lower lags in kernels sur-
rounding isoechoic regions and higher lags otherwise, reducing
noise commonly present in high-lag SLSC images. Factors that
contribute to the quality of the LW-SLSC are mainly the kernel
size (kz x kx), overlap, and the regularization term α.

LW-SLSC images were computed with a 1.20 mm (lateral)
x 1.92 mm (axial) kernel, 50% overlap and NL = 50. For the
regularization coefficient selection (α = 0.1), a conventional
L-curve method was applied over a set of vertebra results to
find the optimized value [9].

C. Data Acquisition and Imaging Parameters

Raw ultrasound channel data were acquired from two verte-
bra samples using an Alpinion ECUBE-12R system. The first
sample was a human lumbar vertebra, which was submerged
in a water tank and imaged with a SP1-5 phased array probe,
as shown in Fig. 1(a). The phased array had 64 elements, 0.3
mm pitch, and 3.8 MHz center frequency. The image depth
was 65 mm, and the focus was located at a depth of 50 mm.

The second sample was a thoracic horizontal section of a
caprine vertebra with surrounding tissue intact. This sample
was imaged with a L3-8 linear array probe, as shown in
Fig. 1(b). The linear array had 128 elements, 0.3 mm pitch,
and 4.0 MHz center frequency. The image depth was 40 mm,
and the focus was located at a depth of 30 mm.

CT acquisitions were performed using a SIEMENS AR-
CADIS Orbic 3D C-Arm with 190 raw projections, generating

(a) (b)

Fig. 1. US acquisition setup. (a) Human vertebra with a phased array probe.
(b) Caprine thoracic horizontal section with a linear array probe.

a 6cm3 volume of 0.23 mm3 voxel resolution. For quantitative
evaluation of the reconstructed images, contrast-to-noise ratio
(CNR) was computed from rectangular regions in the vertebral
foramen (F) and lamina (L) with the following equation:

CNR =
|µF − µL|√
σ2
F + σ2

L

, (4)

where µ and σ2 are the mean and variance, respectively, and
the subscripts represent the ROIs associated with the two
regions described above.

III. RESULTS & DISCUSSION

A. Ex Vivo Human Vertebra

Examples of CT, DAS, SLSC and LW-SLSC images of
the human vertebra are shown in Fig. 2. DAS images were

Fig. 2. Examples of reconstructed CT, DAS, SLSC and LW-SLSC images (65
mm axial x 90 mm lateral) of the human vertebra (non-registered). Observe
that both SLSC and LW-SLSC have similar lateral resolution and the LW-
SLSC image has greater CNR.



created with a rectangular window apodization and a dynamic
range of -54 dB. Qualitatively, both SLSC and LW-SLSC
beamforming remove clutter artifacts that are apparent in in
water region of the DAS image, resulting in the enhanced
contrast of bone structures. The CNR of the SLSC image
was 11.48, outperforming that of the DAS image, which was
2.34. The lateral and axial resolution is also preserved in the
SLSC and LW-SLSC images when considering the similarity
between bone structures in these images and the CT and US-
based images. Similarly, an additional contrast enhancement
was observed in the LW-SLSC image, which was 23.66.

DAS beamforming is commonly used for US-guided
surgery of the spine [2], but it is suboptimal when used to
delineate bony structures due to acoustic clutter and reflections
from bone. For the human spine submerged in water, reducing
the dynamic range partially reduces these undesirable artifacts,
but also eliminates part of the vertebral body and spinous
process. Similarly, SLSC images created with M>15 remove
reflection artifacts without affecting the vertebral body and
spinous process, but causes discontinuity in the bone structure
that can possibly be mistaken for a bone fracture or other
abnormalities. On the other hand, SLSC beamforming with
M<4 overcomes this discontinuous appearance of otherwise
continuous bony structures, but reduces the lateral resolu-
tion and accuracy needed to distinguish the pedicle from
the transverse process. The texture of the bony structure is
notably improved in LW-SLSC images, balancing the trade off
between a high-contrast bone boundary and sufficient spatial
resolution.

For some US acquisition angles in the human vertebra,
vertebral components such as the apex of the spinous process
and ventral limit of the vertebral foramen that were not present
in the current elevation plane were observed in SLSC and
LW-SLSC images. A possible explanation is that projections
of backscattered radiofrequency signals from other elevation
planes contribute to the computation of the coherence matrix
R̂. While this could benefit surgeons with more landmarks
for segmentation, it also limits accuracy in the elevation
dimension.

B. Ex Vivo Caprine Vertebra

Examples of CT, DAS, SLSC and LW-SLSC images of the
caprine thoracic section are shown in Fig. 3. In comparison
to the human vertebra submerged in water, SLSC and LW-
SLSC improve the boundary between soft tissue and the
spinous, lamina and transverse process. This bone boundary
was segmented in the CT image and the segmentation is
overlaid as a white outline on the CT image in Fig. 3. CNR
was enhanced in the SLSC and LW-SLSC images, which were
1.30 and 2.01, respectively, when compared to that of the DAS
image, which was 1.29.

The improvement in visualization of the bone boundary
is expected to provide an improvement in the accuracy of
bone segmentation from ultrasound images. Fig. 4 shows the
registration of bone boundaries segmented from LW-SLSC
and DAS images with the bone boundary segmented from

Fig. 3. Examples of reconstructed CT (46.8 mm axial x 45.4 mm lateral),
DAS, SLSC and LW-SLSC images (40 mm axial x 38.4 mm lateral) of the
caprine sample (non-registered).

Fig. 4. Registered US-CT bone boundaries after applying threshold seg-
mentation to images of the ex vivo caprine vertebra. The US images were
beamformed using DAS (left) and LW-SLSC (right).

the CT image. Rigid monomodal registration was conducted
using a regular step gradient descent optimizer. These results
demonstrate bone boundaries segmented from the US images
are well registered to the bone boundary segmented from the
CT image. However, the shape and thickness of the segmented
boundary in the LW-SLSC image is more similar to that in the
CT image when compared to the bone boundary segmented
from the DAS image, given the same threshold segmentation
value for each ultrasound image (i.e., 30% of the maximum
normalized intensity).

The integrated thickness of the segmented bone boundary
is shown in Fig. 5, which was calculated by summing pixels
of the binary masks along the lateral and axial dimension.
The average integrated thickness for CT, LW-SLSC, and DAS
results were 2.07 mm, 2.19 mm and 7.91 mm, respectively.
Fig. 6(a) shows the integrated thickness difference when the
CT results are compared to DAS and LW-SLSC results. These
results are consistent with the thicker segmented bone bound-
ary derived from the DAS image and the thinner segmented



Fig. 5. Integrated thickness of the segmented bone boundary in DAS, LW-
SLSC and CT image along the lateral (top) and axial (bottom) dimensions.

Fig. 6. (a) Integrated thickness difference between segmented bone boundaries
in ultrasound and CT images. (b) Histograms of distance errors in the lateral
and axial dimensions.

bone boundary derived from the LW-SLSC image
An alternative metric to assess segmentation accuracy is

to measure the error between the segmented boundaries in
the lateral and axial dimensions within a 4.7 mm x 4.7 mm
moving kernel. The histogram of Fig. 6(b) shows this result,
demonstrating lower errors with LW-SLSC images than DAS
images. The percentage of total pixels within ± 1 mm error
was 70% with the LW-SLSC image and 47% with the DAS
image.

The thinner segmented bone boundary and lower errors
achieved with LW-SLSC is expected to decrease uncertainty
in the real-time identification of bone boundaries in ultrasound
images, which has implications for improving targeting accu-
racy during pedicle screw insertion. In addition, the improved
edges in the bone boundary could enable real-time segmen-

tation during spinal fusion procedures without requiring 3D
images. This work is also promising for combining ultrasound
image segmentation with novel photoacoustic-guided spinal
fusion surgery approaches [10].

IV. CONCLUSION
To the authors’ knowledge, this work is the first to demon-

strate that coherence-based beamforming can be used to high-
light bone boundaries for US-based segmentation tasks. In
particular, our novel LW-SLSC beamforming method segments
bone structures in ultrasound images with a striking similarity
to segmentation results achieved by CT images. This is a
significant improvement over the bone segmentation results
that were achieved with traditional DAS beamforming. These
results have implications for enabling real-time, ultrasound-
based segmentation of bone boundaries during spinal fusion
surgeries and other procedures that may benefit from accurate
bone boundary segmentation. Future studies include additional
validation with human cadaver experiments as well as evalu-
ating the feasibility of LW-SLSC in clinical applications.
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