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Abstract—Plane wave ultrasound imaging is one of the fastest
ultrasound methods available to reduce latency for ultrasound-
based robotic tracking tasks. However, the presence of acoustic
clutter and speckle in the images can confuse robotic tracking
algorithms. In addition, multiple plane wave insonification angles
are often necessary to generate good-quality images, which
further reduces the speed of the tracking process. To overcome
these challenges, we are exploring deep learning as a method to
extract pertinent information directly from raw radiofrequency
channel data to locate targets of interest from a single plane
wave insonification. Particularly, in this work, we trained a
deep convolutional neural network (CNN) with 50,000 Field-II
simulations corresponding to a single cyst in tissue insonified
by one plane wave transmitted at 0 degrees. The simulated
cyst radius, axial and lateral positions were varied, along with
the simulated tissue sound speed. The output of the training
process is an interpretable segmentation mask that is free of
clutter and speckle, which we call a CNN-Based image. An
additional dataset of 100 simulations was created and two cyst
targets in an experimental phantom were imaged to test our
approach. The Dice Similarity Coefficient (DSC), representing
the overlap between the true cyst location and the cyst location
in the CNN-Based image, was 0.91 for simulated data and 0.74
for experimental data. The network was generally sensitive to
cyst radius, with mean DSCs increasing from 0.91 to 0.97 when
the cyst radius was ≥ 5 mm. A robot controlled ultrasound
probe enabled volumetric reconstruction of CNN-Based images,
revealing the three-dimensional structure of the two cysts in
the phantom. These results demonstrate that a deep neural
network trained exclusively with simulated data can generalize
to experimental data, which is promising for the development of
deep learning methods as an alternative to traditional ultrasound
beamforming for robotic tracking tasks.

Index Terms—Deep Learning, Ultrasound Image Formation,
Beamforming, Image Segmentation, Machine Learning

I. INTRODUCTION

Ultrasound-based tracking typically necessitates the use of
high frame rate acquisition methods to minimize latency.
Traditionally, plane wave ultrasound imaging is employed
when speed is required, as plane wave imaging is capable of
displaying images at frame rates on the order of thousands of
frames per second [1]. One limitation of plane wave imaging
is that the quality of images acquired is negatively affected
by image degradations like speckle and clutter. In order to
address these challenges, multiple independent acquisitions are
obtained, each yielding a different speckle realization. The
images from these acquisitions are then averaged [2] through

spatial compounding. While spatial compounding improves
image quality, the maximum achievable imaging frame rate
suffers, resulting in a trade-off between image quality and
acquisition speed.

Fundamentally, this trade-off is directly related to the im-
age formation pipeline. First, beamforming is applied to the
reflected signals received by the ultrasound probe with the
goal of exploiting the diversity of information received across
the elements of the sensor array to achieve beam directionality
and focusing [3]. Following beamforming, envelope detection,
log compression, and filtering are applied to obtain an ultra-
sound image that is interpretable by humans. In addition, the
formation of a B-mode ultrasound image is the first step for
ultrasound-based robotic tracking systems. Post processing and
segmentation algorithms are then applied to the beamformed
B-mode image to extract the locations of targets of interest,
which may then be used as an input for robotic control.

Beamforming is a model-based approach with a rich history
and a solid mathematical basis. However, model-free machine
learning approaches have recently achieved much success,
with deep convolutional neural networks (CNNs) being espe-
cially successful. CNNs have outperformed traditional model-
based imaging methods in a myriad of fields from natural
image classification [4] to cancer detection [5]. They have also
been successfully applied to imaging tasks in the ultrasound
domain, like real-time prostate segmentation [6], suppression
of off-axis scattering [7], simulating ultrasound images from
given echogenicity maps [8], and enhancing ultrasound image
quality [9] and resolution [10].

Previous work from our group [11] introduced and demon-
strated the possibility of using deep neural networks to directly
segment targets of interest from the raw radiofrequency (RF)
channel data, prior to applying time delays or any other
traditional beamforming steps. In doing so, our proposed plan
bypasses many of the intermediary steps required for image-
guided robotic tracking tasks (e.g., beamforming and segmen-
tation, as illustrated in Fig. 1), which has the potential to
reduce algorithm complexity and processing times. This paper
expands our previous work by including multiple hypoechoic
cysts and demonstrating the ability to detect experimental
targets after training with simulated data. We also integrate
our approach with a robot-controlled ultrasound probe to
image multiple slices of an anechoic and a -6dB hypoechoic



Fig. 1: An overview of our proposed pipeline. Traditionally, for ultrasound-based robotic tracking tasks, beamforming, envelope
detection, log compression, filtering and segmentation are performed in sequence on input RF channel data to generate
information for the robotic tracking tasks. Instead, our proposed approach uses a deep convolutional neural network to directly
locate and segment cyst targets from surrounding tissue using a single plane wave insonification.

cylinder in a phantom, and combine the resulting predictions
to form a volumetric reconstruction of the cylinders. Network
performance is assessed both qualitatively and quantitatively
as a function of multiple parameters of interest.

II. METHODS

We trained our network using 50,000 Field-II [12] simula-
tions of a single cyst in normal tissue, with 32,000 simulations
corresponding to an anechoic cyst and the remaining 18,000
simulations corresponding to a -6dB hypoechoic cyst. Addi-
tional cyst parameters that were varied are listed in Table I.

TABLE I: Field-II cyst simulation parameters

Parameter Min Max Increment
Radius (r) 2 mm 8 mm 1 mm

Speed of Sound (c) 1440 m/s 1640 m/s 10 m/s
Lateral position of cyst center (x) -15 mm 15 mm 2.5 mm

Axial position of cyst center(z) 35 mm 75 mm 2.5 mm

Each simulation corresponds to a single plane wave insonifi-
cation at 0 degrees. The parameters of an Alpinion L3-8 linear
array transducer were used for the simulations in order to
transfer the learned network to real data acquired using an L3-
8 transducer connected to an Alpinion E-Cube 12R ultrasound
research scanner.

To test the network, an additional test set of 100 Field-
II simulations corresponding to parameters randomly chosen
from within the range of our training data was constructed. In
addition, anechoic and -6dB hypoechoic cysts at a depth of 40

mm in a CIRS 054GS phantom were imaged. These phantom
data were used to test generalization of a network trained
exclusively on simulated data to experimental phantom data.
For the simulations, the ground truth segmentation mask was
known a priori, while the ground truth for the phantom data
was acquired by manually labeling regions in the beamformed
ultrasound image as cyst or tissue.

The L3-8 ultrasound transducer was then attached to the
end effector of a Sawyer robot (Rethink Robotics, Boston,
MA) to enable volumetric image acquisition. Channel data
from 20 individual slices of the anechoic and -6dB hypoechoic
cylinders in the CIRS 054GS experimental phantom were ac-
quired with 1 mm increments in the elevation direction. CNN-
Based images from each slice were combined in MATLAB to
generate a volumetric reconstruction of the experimental data,
revealing the two cylindrical structures in the phantom.

The architecture used for the neural network is based on the
U-Net [13] architecture commonly used for image segmenta-
tion. The neural network has a VGG-13 [14] encoder, with
BatchNorm [15] layers used to speed up convergence. The
network was trained to minimize the mean square difference
between the true segmentation mask and the neural network
prediction using the Adam [16] optimization algorithm, with
training run for 80 epochs.

The final layer of the network is a sigmoid layer which
outputs a scalar value between 0 and 1 for each pixel. This
output is interpreted as a per-pixel measure of how confident
the network is that the given pixel is a cyst or normal tissue.



An output value of 0 corresponds to a 100% confidence that
the pixel is normal tissue, and an output value of 1 corresponds
to a 100% confidence that the pixel is a cyst pixel.

To evaluate the output of the network, the Dice Similarity
Coefficient (DSC) metric was used. The DSC is defined as:

DSC(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

(1)

where X is the true segmentation mask and Y is the predicted
segmentation mask. The DSC is thus limited to be a scalar
between 0 and 1, with a higher DSC score corresponding to
a better result.

III. RESULTS & DISCUSSION

A. Simulation Results

When the trained network was applied to the simulated test
set, an average DSC score of 0.91 was obtained with a standard
deviation of 0.11. The radii of each simulated cyst was rounded
to the nearest integer mm, to group the DSC results as a
function of radius, as shown in Fig. 2. Note that the mean DSC
for each integer radius monotonically increases as a function
of radius from a mean of 0.62 at 2 mm radius to a mean
of 0.98 at 8 mm radius. The standard deviation of the mean

Fig. 2: Performance variation of the trained network as a
function of cyst radius. Mean DSC increases and standard
deviation decreases as cyst radius increases.

DSC decreases from 0.12 to 0.01 as the radius increases. Thus,
network performance appears to be degraded in the presence of
small cysts. However, this apparent degradation occurs because
the DSC score penalizes errors in the position and shape of
smaller cysts more than it penalizes larger cysts.

Because the presence of small cysts causes a noticeable
degradation in the network performance, the DSC as a function
of the remaining variables (i.e., c, z, x, and intrinsic contrast) is
reported in Fig. 3 for both the entire dataset and after restrict-
ing consideration to cysts with radii ≥ 5mm. After limiting the
DSC based on cyst radius, it is apparent that the DSC results
slightly degrade as intrinsic contrast increases from anechoic
to -6dB. Otherwise, there is no apparent correlation between
DSC and the remaining parameters in the simulated data.

B. Phantom Results
For the anechoic and -6dB hypoechoic targets in the CIRS

phantom, measured performance is similar to that of simulated
cysts of similar size, as shown in Fig. 2. In particular, the aver-
age DSC score was 0.74 with standard deviation of 0.13. Note
that the network was not retrained to obtain these phantom
results. One difference between simulated and experimental
data is that the Field-II simulations do not model tissue
attenuation, which occurs in experimental data. To address
attenuation changes during testing, the top and bottom halves
of the channel data were normalized and processed separately.
In addition, a morphological filter was applied to the final
predicted mask in order to suppress small false positives.

C. Volumetric Reconstruction
The 20 slices acquired with robotic control are shown

in Fig. 4. Each slice was passed through the network and
processed to produce a prediction slice. The prediction slices
were then stacked into a cube, and a volumetric segmentation
of cyst versus tissue was obtained. Finally, this volumetric
segmentation was compared to the hand annotated ground truth
segmentation. When compared to the ground truth, the mean
errors in cyst radius (r), cyst lateral position (x), and cyst axial
position (z) for the anechoic cyst were 0.37 mm, 0.57 mm,
and 0.75 mm, respectively. Similarly, the mean errors in r, x,
and z for the -6dB hypoechoic cyst were 0.57 mm, 0.59 mm,
and 0.90 mm, respectively.

Fig. 3: Performance of the network applied to the test data. Speed of sound (c), intrinsic cyst contrast (where AN = anechoic),
axial position of cyst center (z), and lateral position of cyst center (x) were varied in turn aggregating over all other parameters,
and the mean Dice similarity coefficient (DSC) ± one standard deviation are reported for each.



DAS Images Segmented from DAS

CNN-Based Images Segmentation Comparison

Fig. 4: Volumetric reconstruction of an anechoic and -6 dB hypoechoic cylinder in a CIRS 054GS phantom. Twenty slices in
the elevation direction were obtained with an elevation spacing of 1 mm. Predictions were obtained from each image slice,
and these predictions were stacked to obtain a volumetric segmentation that was then compared to segmentations based on the
ultrasound delay-and-sum (DAS) B-mode image.

IV. CONCLUSION

A fully convolutional neural network was trained to extract
tissue information directly from raw RF channel data prior to
the application of any delays to account for time of arrival
differences. The overall goal is to produce a segmentation
mask that can be directly used as an input for robotic tracking
algorithms. The network was successfully transferred to ex-
perimental data after training exclusively with simulated cysts.
Finally, the network was integrated with a robot and used to
construct a volumetric segmentation of a pair of cylinders
in the CIRS 054GS phantom. This work demonstrates the
promise of using deep learning as a novel ultrasound image
formation methodology to directly process RF channel data
and obtain image segmentations for robotic tracking tasks.
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