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Abstract—Deep neural networks trained with simulated data
are capable of distinguishing sources from reflection artifacts in
photoacoustic data. Our group recently introduced this concept
with simulated and experimental waterbath and phantom data.
In this novel approach, channel data is used as an input to learn
the spatial impulse response of pressure waves from point-like
sources and differentiate true sources from reflection artifacts.
We hypothesize that this is possible based on learned differences
in the unique shape-to-depth relationship of point sources. The
work presented in this paper builds on previous demonstrations
to investigate the feasibility of this approach when applied
to ex vivo tissue and in vivo data from a pig catheterization
procedure. Three networks were trained with k-Wave simulated
data: two residual deep network architectures (i.e., Resnet-50
and Resnet-101) and the previously implemented VGG16 deep
network architecture, which does not use residual learning. These
networks classified sources correctly in over 82% of images in
the ex vivo chicken breast, liver, and steak datasets and over 64%
of images in the dataset acquired from an ex vivo chicken thigh
containing bone. When applied to in vivo data, the Resnet-50 and
Resnet-101 architectures classified 83.3% and 88.8% of sources
correctly, respectively, while the VGG16 architecture performed
more poorly, classifying 14.5% of sources correctly. In addition,
the residual network architectures had <2% misclassification
rate, whereas the VGG16 architecture had a maximum 23.53%
misclassification rate for all datasets. These results indicate that
residual networks architectures are better suited to in vivo source
detection and artifact elimination using our approach.

I. INTRODUCTION

Photoacoustic imaging uses pulsed laser light to illuminate
a region of interest, which absorbs the light, undergoes ther-
mal expansion and converts the absorbed optical energy into
mechanical pressure waves [1]. The resulting pressure signals
are received with standard ultrasound imaging equipment
for reconstruction into a photoacoustic image. Photoacoustic
imaging has several promising applications including the de-
tection and treatment of cancer [1]–[3] as well as surgical
guidance and navigation [3]–[10].

Reflection artifacts are a major limitation to the clinical
utility of photoacoustic imaging. These artifacts are caused
by pressure waves from a photoacoustic source reflecting off
of highly echoic objects in the surrounding tissue region, such
as bone. Traditional beamforming techniques reconstruct these
multipath reflection artifacts at greater depths than they truly
appear, which can lead to misinterpretations by clinicians.

Previous work from our group demonstrates that a deep
neural network can identify point sources from raw channel

data [11], differentiate these sources from signals associated
with reflection artifacts, and thereby remove reflection artifacts
in photoacoustic images [12]–[14]. We trained deep neural net-
works to distinguish between sources and artifacts by learning
the spatial impulse response function of photoacoustic point
sources in simulated photoacoustic channel data. These deep
neural networks correctly classified true sources in simulated
data and additionally transferred learned knowledge to exper-
imental photoacoustic data acquired from the circular cross
section of a needle tip (i.e. a point-like source) located in a
waterbath setup and the circular cross section of brachytherapy
seeds embedded in a plastisol phantom.

Our previous work utilized the VGG16 deep network archi-
tecture [15]. Recently however, residual neural networks [16]
have become the new state of the art for object recognition
tasks. The depth of neural networks has been correlated with
performance in various machine learning tasks. Non-residual
networks, often referred to as plain deep networks, suffer
from the vanishing gradient problem, which particularly occurs
when the network becomes too deep and thus renders training
intractable. Residual learning can be used to overcome this
issue. In residual learning, skip connections are utilized to pass
information from shallower layers to deeper layers allowing
for greater information flow through the network. Residual
learning has allowed for training of networks which exceed
100 layers in depth and have also been shown to improve
performance over plain neural networks in practice [16].

This paper investigates the ability of our deep beamforming
technique to transfer learned knowledge from simulated data
to both ex vivo data from four tissue samples and in vivo
data from a pig catheterization procedure. In addition, we
investigate the potential of residual networks to improve our
technique by directly comparing three network architectures
(i.e., VGG16, Resnet-50, and Resnet-101) and their ability to
transfer knowledge from the simulated domain to these ex vivo
and in vivo test cases.

II. METHODS

A. Simulated Datasets

Two datasets were generated corresponding to channel data
acquired with imaging depths of 4.5 cm and 10 cm. These
datasets were simulated in k-Wave [17]. Noting the importance
of simulating an accurate receiver model during training [12],



the discrete receiver was modeled after the Alpinion L3-8
linear array ultrasound transducer, and the parameters for this
model are reported in Table I.

A total of 19,992 photoacoustic channel data images were
simulated for each dataset. Each image contained one true
0.1 mm-diameter source and one reflection artifact appearing
with the same diameter as the source. Reflection artifacts were
generated using the technique detailed in our previous work,
shifting true sources deeper into the image [12]–[14] by the
Euclidean distance, ∆, between the source location, (xs, zs),
and the reflector location, (xr, zr), defined as:

|∆| =
√

(zs − zr)
2

+ (xs − xr)
2 (1)

Additional parameters used to simulate the dataset are reported
in Table II.

B. Deep Network Training

Three network architectures were trained with the simulated
datasets: VGG16 [15], Resnet-50 [16], and Resnet-101 [16].
VGG16 is a plain deep network used in previous work and will
represent our basis of comparison to Resnet-50 and Resnet-
101 which are residual network architectures with 50 and 101
layers, respectively. Each network was used in conjunction
with the Faster R-CNN algorithm [18] used within the De-
tectron software [19]. Each network was trained to detect and
classify the peak of incoming acoustic waves as either source
or artifact. Training was performed with 80% of the dataset,
while the remaining 20% was used for validation. Faster R-
CNN outputs a list of object detections for each class (i.e.,
source or artifact), along with the object location in terms
of bounding-box pixel coordinates as well as a confidence
score between 0 and 1 for each image. A total of 6 different
networks were trained, one for each architecture and image
depth combination.

The plain deep network, VGG16, was trained using an
NVIDIA Titan X (Pascal) GPU for 100,000 iterations, cor-
responding to 5 epochs in total, and was initialized using a
network pre-trained with the ImageNet dataset [20]. Training

TABLE I: Simulated Acoustic Receiver Parameters

Value
Kerf (mm) 0.06

Element Width (mm) 0.24
Sampling Frequency (MHz) 40

TABLE II: Range and Increment Size of Simulation Variables

Image Point Target
Depth Parameters Min Max Increment

4.5 cm

Depth Position (mm) 5 25 0.25
Lateral Position (mm) 5 30 0.25

Channel SNR (dB) -5 2 random
Object Intensity (multiplier) 0.75 1.1 random

Speed of Sound (m/s) 1440 1640 6

10 cm

Depth Position (mm) 50 95 0.25
Lateral Position (mm) 5 30 0.25

Channel SNR (dB) -5 2 random
Object Intensity (multiplier) 0.75 1.1 random

Speed of Sound (m/s) 1440 1640 6

using this configuration took approximately 5.5 hours. The
residual networks were trained using 2 NVIDIA Titan X
(Pascal) GPUs for 30,000 iterations, corresponding to 3 epochs
in total. Similar to the VGG16 the network, the residual
networks were initialized using a network pre-trained with
the ImageNet dataset [20]. The base learning rate used was
5 × 10−3 and decayed to 5 × 10−4 at iteration 15,000, and
5×10−5 at iteration 20,000. Training in this configuration took
approximately 3 hours. Once trained, these networks provided
detection results in 0.068 s, which translates to a frame rate
of 14.7 Hz.

C. Ex Vivo Experiments

The trained networks were first tested on ex vivo photoa-
coustic channel data acquired from the circular cross section
of a needle tip inserted in four tissue samples: (1) chicken
breast, (2) liver, (3) steak, and (4) a chicken thigh containing
bone. The hollow core biopsy needle contained a 1 mm core
diameter optical fiber. The optical fiber was coupled to a
Quantel (Bozeman, MT) Brilliant laser operating at 750 nm,
and this setup enables the signals in the photoacoustic channel
data to appear as if they originated from a point-like source.
The point-like photoacoustic response from the needle tip was
recorded with an Alpinion (Bothell, WA) E-Cube 12R scanner
connected to an L3-8 linear array ultrasound transducer which
was held in place by a Sawyer Robot (Rethink Robotics,
Boston, MA). These datasets were previously acquired for
photoacoustic-based visual servoing of the needle tip [21].
Seventeen channel datasets were acquired for each of the
chicken breast, liver, and steak experiments, while 31 channel
data sets were acquired in the chicken thigh. These channel
data were acquired at an imaging depth of 4.5 cm. Therefore,
these ex vivo data were tested with the 4.5 cm-deep networks.

D. In Vivo Experiments

The networks were additionally tested on in vivo data
acquired during a pig catheterization procedure, which was
performed with approval from the Johns Hopkins University
Animal Care and Use Committee. The pig was positioned
supine on an operating table and was fully anesthetized. To
gain vascular access two 9F vascular sheaths were placed in
the right femoral vein and artery using an ultrasound-guided
micro-puncture technique. A bolus of heparin was adminis-
tered after the sheath was secured in place. A 1 mm core
diameter optical fiber was inserted into a 5F inner diameter,
7F outer diameter, 28 inch long cardiac catheter (St. Jude
Medical, St. Paul, Minnesota, U.S.A.), which was inserted in
the femoral vein sheath and advanced toward the heart. The
optical fiber was coupled to a Phocus Mobile laser (Opotek,
Carlsbad, California, U.S.A.) laser operating at 750 nm and
imaged with an Alpinion (Bothell, WA) E-Cube 12R scanner
connected to an L3-8 linear array ultrasound transducer which
was held in place by a Sawyer Robot (Rethink Robotics,
Boston, MA). Similar to the images of the needle tip, this
setup enabled the circular cross section of the fiber tip within



the catheter to appear as a point-like photoacoustic source.
A total of 279 channel datasets were acquired at an imaging
depth of 10 cm. Therefore, these in vivo data were tested with
the 10 cm-deep networks.

III. RESULTS

The classification results for the three networks applied to
the ex vivo and in vivo channel data is shown in Fig. 1.
The VGG16 architecture correctly classified 100% of sources
in the ex vivo chicken breast, liver, and steak datasets and
83.9% of the ex vivo chicken thigh dataset. In addition, the
VGG16 architecture displayed no misclassifications for the
chicken breast and steak datasets and a misclassification rate
of 23.5% and 8.9% for the steak and chicken thigh datasets,
respectively. Performance generally decreases with increasing
levels of reflection and reverberation artifacts, considering that
the presence of reflection and reverberation artifacts were
minimal in the chicken breast data, greater in the liver data,
and greatest in the steak and chicken thigh data (see Fig. 2).

The Resnet-50 and Resnet-101 network architectures cor-
rectly classified all chicken breast sources. The performance of
these residual network architectures was worse in the remain-
ing ex vivo tissue, where Resnet-50 and Resnet-101 correctly
classified sources at rates of 82.35% and 94.11%, respectively,
in the liver dataset, 82.35% and 88.24%, respectively, in the
steak dataset, and 70.97% and 64.52%, respectively, in the
chicken thigh dataset. There were no misclassifications in any
of these ex vivo tissue samples with the residuals networks.

Despite the poor performance of the in vivo data with
the VGG16 network architecture (i.e., 14.5% source classi-
fication and 85.5% missed detections), the residual network
architectures correctly classified 83.3% (Resnet-50) and 88.8%
(Resnet-101) of sources in the in vivo data. In addition, the
misclassification rates for all three networks was less than 2%,
while the missed detection rates for the residual networks was
less than 15.9%.

Fig. 1: Classification results for the four tissue samples and
the in vivo data after testing with the VGG16, Resnet-50, and
Resnet-101 networks. VGG16 does not transfer well to in vivo
data, but the residual networks are more promising when tested
with in vivo data.

Fig. 2: Channel data corresponding to the five different experimental datasets used in this work: (a) chicken breast, (b) liver,
(c) steak, (d) chicken thigh, and (e) in vivo. Beneath the channel data sample are the images corresponding delay and sum
followed by CNN images generated using the outputs of the Resnet-101 network.



One channel data sample for each experimental dataset is
displayed in Fig. 2, along with the corresponding delay-and-
sum beamformed image. The CNN-based images [14] are gen-
erated from the detection results of the Resnet-101 network.
The standard deviation of location errors when validating this
network with simulated data were 0.038 mm and 0.058 mm
for the 4.5 cm and 10 cm deep datasets, respectively. Standard
deviations are presented at 10 times their true value for clarity
and the location of the circle represents the detected source
location at the center of the detection bounding box.

This comparison demonstrates that the networks can suc-
cessfully recover the location of the optical fiber tip and
display an image that is artifact free and has arbitrarily high
contrast with frame rates suitable for real-time imaging.

IV. DISCUSSION

This work advances our previous work [14] by investigating
the clinical utility of our deep beamforming technique as an
alternative to traditional time-of-flight based beamformers. We
successfully demonstrated that a deep network trained with
only simulated data can transfer learned knowledge to ex vivo
and in vivo data with no additional training. Our focus is
identifying point-like targets, manifested as an optical fiber
housed in a hollow-core biopsy needle or a cardiac catheter.

There are three important characteristics of these network
results. First, the VGG16 architecture seems to struggle with
providing accurate detections in vivo when compared to the
residual networks. One potential reason for this challenge
is the depth of the channel data. When the depth of the
channel data increases, sources and artifacts tend to look
similar because the wavefronts appear with less curvature.
Given this decreased variance in the wavefront shapes, we
suspect that a deeper network (i.e., the residual network),
has greater capacity to learn higher-level features. Second,
all networks experienced notable performance decreases in
the presence of bone, such as in the chicken thigh dataset,
which contains the most reflection artifacts. As a result, the
classification rates of our networks decrease. One possible
solution to this challenge is temporal averaging of the network
results. Despite the lower classification rates in the presence of
bone, the corresponding misclassification rates remain low, in-
dicating successful elimination of artifacts. Finally, the residual
networks maintained a misclassification rate <2% for all cases,
indicating their suitability for the task of artifact elimination.

V. CONCLUSION

We trained both plain and residual deep neural network
architectures using simulated photoacoustic channel data to
distinguish between sources and artifacts and transferred
learned knowledge from the simulated domain to ex vivo and in
vivo channel data. With no additional training, these networks
successfully detected sources in ex vivo and in vivo data, which
has promising applications for the development of clinical and
interventional photoacoustic imaging systems.
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