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Purpose: Compensation for respiratory motion is important during abdominal cancer treat-
ments. In this work we report the results of the 2015 MICCAI Challenge on Liver Ultrasound
Tracking and extend the 2D results to relate them to clinical relevance in form of reducing treat-
ment margins and hence sparing healthy tissues, while maintaining full duty cycle.

Methods: We describe methodologies for estimating and temporally predicting respiratory liver
motion from continuous ultrasound imaging, used during ultrasound-guided radiation therapy. Fur-
thermore, we investigated the trade-off between tracking accuracy and runtime in combination with
temporal prediction strategies and their impact on treatment margins.

Results: Based on 2D ultrasound sequences from 39 volunteers, a mean tracking accuracy of 0.9
mm was achieved when combining the results from the 4 challenge submissions (1.2 to 3.3 mm).
The two submissions for the 3D sequences from 14 volunteers provided mean accuracies of 1.7
and 1.8 mm. In combination with temporal prediction, using the faster (41 vs. 228 ms) but less
accurate (1.4 vs. 0.9 mm) tracking method resulted in substantially reduced treatment margins
(70% vs. 39%) in contrast to mid-ventilation margins, as it avoided non-linear temporal prediction
by keeping the treatment system latency low (150 vs. 400 ms). Acceleration of the best tracking
method would improve the margin reduction to 75%.

Conclusions: Liver motion estimation and prediction during free-breathing from 2D ultrasound
images can substantially reduce the in-plane motion uncertainty and hence treatment margins.
Employing an accurate tracking method while avoiding non-linear temporal prediction would be
favorable. This approach has the potential to shorten treatment time compared to breath-hold and
gated approaches, and increase treatment efficiency and safety.

I. INTRODUCTION

Intra-fraction organ motion due to breathing repre-
sents a challenge during intensity-modulated radiation
therapy (IMRT) of the liver, lungs, pancreas, kidneys,
breast and prostate [8, 40, 42, 58, 59, 61, 75, 89]. The
aim of IMRT is to deliver conformal and localized dose to
the tumor, while sparing surrounding healthy tissue. Yet
the motion of these organs requires substantially larger
therapy margins (e.g. approximately 1-18 mm for lung,
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10-55 mm for liver, 10-40 mm for kidney and 20-40 mm
for pancreas [42]), to include the entire tumor volume
in the treated area for the anticipated range of motion
and hence, to ensure the effectiveness of the treatment
[42, 65]. Yet large margins are undesirable and reduce
the advantages of IMRT [84].

Image-guided radiation therapy uses imaging of target
tissues prior to each fraction and may also provide contin-
uous imaging during radiation delivery. This enables the
estimation of the target position, size and shape, and the
intra-fraction target motion. While most current treat-
ment protocols attempt to arrest motion during radiation
delivery using breath-hold, continuous imaging (or mo-
tion monitoring) can enable tracking of radiation beam
to follow tumor motion in real-time [86]. One drawback
of breath-holding is that repeat breath holds are often
required if patients cannot hold their breath for the en-
tire delivery period (i.e. greater than approximately 15
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seconds [7]), thus treatment times will be lengthened as
the beam is switched off between breath-holds. Also, it
has been observed that the liver position is subject to
variation between breath-holds and that the liver may
undergo drift during breath-hold [21, 45, 62]. These un-
certainties should be accounted for with an increase in
treatment margins. Another option is gating the ra-
diation beam whilst the patient breathes freely, which
relies on a method of respiratory monitoring to deter-
mine the respiratory phase but target coverage can be
compromised due to loss of correlation between internal
motion and respiratory signals and irregular breathing
and drift [46]. The advantage of continuous motion mon-
itoring and tracking of the radiation beam over these
techniques is that the treatment is not interrupted, pa-
tients can breath freely and that breathing irregularities
and drift are compensated for dynamically rather than
by increasing margins, which may result in a decrease in
radiation-induced liver toxicity and duration of the ther-
apy, and increase in chance of tumor control [16, 23].

Another frequently used technique for motion moni-
toring is the invasive implantation of fiducial markers for
tumor tracking during radiation [20, 39, 74, 79]. Fiducial
markers can be used for image-based tracking, e.g. simul-
taneous kilovoltage and megavoltage imaging [37, 90] or
kilovoltage intra-fraction monitoring [39], or non-image
based tracking, e.g. as for radio frequency triangulation
[32, 74]. Examples of limitations of using fiducial mark-
ers are the requirement for surgery, possibility of markers
migration and accuracy of the triangulation [43, 74].

Ultrasound (US) imaging is a suitable choice for ob-
serving motion during therapy due to its high tempo-
ral resolution, non-invasiveness and cost-efficiency. Cur-
rently, US-guided IMRT is mainly used in clinics to treat
prostate [26, 48] and breast cancer [24]. US-guided tar-
geting of the liver in RT has been recently investigated
[27, 29, 60]. However, during therapy fractions, liver tu-
mors are not necessarily visible in US images. The acous-
tic impedance or acoustic reflectivity of liver tumors is
often similar to that of surrounding tissue. This makes
the tumors appear in US images with the same or simi-
lar echogenicity to tissue. The images can also be filled
with acoustic clutter [50]. In both cases, it is difficult to
distinguish the tumors in traditional US images [10]. In-
stead, the motion of other visible anatomical structures
(e.g. vessels) can be estimated [17, 18] and used as input
to 4D liver motion models to spatially predict the tumor
position [54, 64, 80, 82].

Although US probes are typically operated by hands,
either passive arms or robotic arms can be used to hold
the probe and therefore operators are not required to
be in the treatment room. A robotic arm offers the ad-
ditional advantage of moving with the target organ or
helping inexperienced users to find it through coopera-
tive control [71, 78].

Linear accelerator-based systems (LINAC) or adaptive
targeting of the radiation beam using a multileaf colli-
mator (MLC) or robotic treatment head, to follow the

tumor motion during fractions, should take into consid-
eration the treatment system latencies, including delays
from the image acquisition, motion estimation algorithm,
communication and control system, and beam delivery
[60, 72, 84]. Therefore, the motion of the tumor should
be accurately predicted for a sufficient time in the future
to ensure the delivery of the radiation dose to the tumor
and reduce the treatment margins [87].

In this paper we investigate the impact of tracking
liver motion under free breathing using US on treat-
ment margins. US tracking has been investigated in sev-
eral applications, e.g. for respiratory [17, 18] and car-
diac motion estimation [18]. However, reported perfor-
mances in the liver are still not always suitable for di-
rect translation into clinical application. In the case of
respiratory motion, limiting factors are low robustness
(i.e. high percentage of tracking errors > 5 mm [42])
and high run-time (e.g. > 300 ms) of the proposed
algorithms, which both undermine the potential use of
US tracking for online target localization during treat-
ment. In addition, to the best of our knowledge, very few
works have demonstrated its clinical impact in radiother-
apy [59] and recent works on US guidance for real-time
motion compensation are still based on phantom exper-
iments [38, 70]. Based on the results of the MICCAI
2015 Challenge on Liver Ultrasound Tracking (CLUST
2015) (http://clust.ethz.ch/), we propose an accu-
rate and robust strategy to track anatomical landmarks
in the liver, which fuses the tracking results of the algo-
rithms that were submitted to the challenge. In addition
to CLUST 2015, we temporally extrapolate the motion
of the tracked landmarks, such as vessels, to compensate
for system delays that occur in a real treatment scenario
and investigate different strategies. Finally, the resulting
uncertainties of the predicted motion are used to define
motion-compensated treatment margins. These are com-
pared to standard margins to investigate the efficiency of
the proposed approach.

Compared to our previous benchmark (CLUST 2014)
[17], we evaluated landmark tracking results on a larger
dataset (overall +60% sequences and from 36 to 60 sub-
jects) and with respect to more manual annotations, pro-
vided by three observers on 10% of the images. These
annotations underwent a quality check and a correction
if necessary to ensure optimal evaluation conditions. Fur-
thermore, we provided a previously unseen validation set
during the challenge, which was used to assess the track-
ing performance under realistic conditions and to eval-
uate the change of treatment margins when considering
motion prediction. The aforementioned additions to the
tracking challenge presented in this paper, i.e. tempo-
ral motion prediction and combined results for motion-
compensated margin calculations, are novel compared to
our previous study [17].

The paper is organized as follows. In Section IIA we
describe the challenge data. In Section II B we list the
tracking methods proposed by the challenge participant
groups and their fusion. Temporal prediction was applied
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to selected tracking results, as described in Section II C.
Predicted motion estimates were then used to compute
treatment margins for motion-compensated therapy, see
Section II D. Evaluation criteria are described in Section
II E. Tracking and prediction results, and their impact in
estimating treatment margins are reported and discussed
in Sections III and IV. Finally, Section V summarizes
conclusions of the challenge outcome and extension to
motion-compensated treatment planning.

II. MATERIALS AND METHODS

A. Ultrasound data

A total of 85 US sequences of the liver of 60 healthy vol-
unteers of 18 years of age and older under free-breathing
were collected between 2009 and 2015. Exclusion criteria
were pregnancy, existing malignant tumor or undergo-
ing cancer treatment. The data were provided by seven
groups, the Biomedical Imaging Research Laboratory of
CREATIS INSA, Lyon, France (CIL); Computer Vision
Laboratory, ETH Zurich, Switzerland (ETH) [19, 64];
mediri GmbH, Heidelberg, Germany (MED); Biomedi-
cal Imaging Group, Departments of Radiology and Med-
ical Informatics, Erasmus MC, Rotterdam, The Nether-
lands (EMC) [4]; Joint Department of Physics, Insti-
tute of Cancer Research & Royal Marsden NHS Foun-
dation Trust, London and Sutton, UK (ICR) [6, 49];
and SINTEF Medical Technology, Image Guided Ther-
apy, Trondheim, Norway (SMT) [88]. The acquisition
and use of subject data were approved where applicable,
by an ethics committee or institutional review board, and
informed consent by each study participant was received.

An overview of the data is given in Appendix A. The
sequences were acquired with a broad range of equipment
(7 US scanners, 8 types of transducer) and different ac-
quisition settings. The data consisted of 63 2D and 22
3D sequences from 42 and 18 subjects, respectively, which
are characterized by duration ranging from 4 s to 10 min
and temporal resolution form 6 to 31 Hz. Examples of
the first frames and annotations are shown in Figure 1.
Data were anonymized and randomly divided into two
sets:

Training set: (40% of the sequences, i.e. 24 2D and
seven 3D sequences), for which annotations of 10%
of the images were released, to allow for tuning of
the tracking algorithms.

Test set: (60%, 39 2D and 14 3D sequences), for which
annotations of the first images were provided. The
resulting tracking estimates were used to train the
parameters of the temporal prediction model and
to define treatment margins. From this set, 15 2D
and 6 3D sequences were released during the on-site
challenge at the MICCAI 2015 CLUST event.

B. Tracking methods

1. Tracking objective

Similarly to [17], I(t,x) represents the intensity (or
brightness) of the US image I(t) at position x, with x =
[x1, . . . , xD]T ∈ RD for D = {2; 3}, at frame t, with t =
1, . . . , T and T the total number of frames of the image
sequence. The tracking objective was to compute the
position of J point-landmarks Pj(t) ∈ RD in each image,
with j = 1, . . . , J and J ∈ {1; . . . ; 5} in this challenge,
similar to [17]. The test set accounted a total JTOT = 85
2D and 22 3D landmarks. For all sequences, annotations
of the first frame Pj(1) was provided.

In the following we give an overview of the four 2D
and two 3D tracking algorithms, which were submitted
to the challenge. A detailed description of each method
can be found in the challenge proceedings [56].

2. 2D tracking

Nouri & Rothberg - Convolutional Neural Net-
work. The method proposed by Nouri & Rothberg
trains a convolutional neural network to learn a function
(with almost 1.9 millions parameters) which maps the
intensities of image patches (46 × 46 pixels) into a low-
dimensional embedding space, such that the Euclidean
distance metric in that space is robust to the encoun-
tered landmark transformations [11, 30]. A classical win-
dow search of size 24 pixels around a seed point pj is used
to find the location Pj(t) in the new frame t that is most
likely to be the tracked landmark. The window search
finds the point that minimizes the learned distance metric
to a template, which is composed of both the initial frame
and the previous 10 frames [I(1), I(t− 10 + 1), . . . , I(t)].
Kondo - Kernelized Correlation Filter. Kondo pro-
posed two extensions to the Kernelized Correlation Filter
(KCF) [33], which applies a Gaussian kernel (σ = 0.2) to
the correlation of image windows in the Fourier domain.
KCF is extended by refining the initial tracked position
by template matching in the region of ± 2 pixels around
the KCF prediction, based on normalized cross correla-
tion. The second extension is the adaption of the window
size. In a so-called calibration step, tracking is performed
with a manually predetermined window size of 96 × 96
pixels for the first breathing cycle. Then the window
size is revised based on the maximum frame-to-frame dis-
placements and the feature size. From then onwards, the
revised window size is used for KCF tracking with tem-
plate matching refinement.
Makhinya & Goksel - Optical Flow. Makhinya &
Goksel have extended an algorithm for identifying and
tracking superficial veins in the forearm [13, 14] by in-
tegrating several tracking recovery strategies to take ad-
vantage of the repetitive nature of respiration. Lucas-
Kanade-based [52] tracking was applied on regularly-
spaced grid points around each landmark, and used for
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reference tracking (I(1) to I(t)), when the local appear-
ance of I(1) and I(t) is similar. Meanwhile, iterative
tracking (I(t− 1) to I(t)) tracks points when the former
fails. Each tracking strategy yields several motion vec-
tors, which are then filtered for outliers. Subsequently, an
affine transformation is fitted to the remaining vectors to
provide a robust motion estimate for the landmark. For
vessel-like structures model-based tracking is utilized via
an axis-aligned ellipse representation of vessels. For each
I(t), first the ellipse is translated by the previous motion
estimate. Then, its center and radii are re-estimated as
in [14] using the Star edge detection, dynamic program-
ming, model fitting, and binary templates. The resulting
ellipse center is taken as the sought landmark.
Hallack, et al. - Log Demons. Hallack, et al. used
the diffeomorphic logDemons image registration method
[85], but with a dense Scale Invariant Feature Transform
(SIFT) [51] as similarity measure [12, 31]. Each land-
mark Pj was tracked independently and sequentially us-
ing image registration around a region of interest (Wj)
[44]. For frame I(t), Wj,t−1(t) of size 51 × 51 pixels is
extracted around the previous estimated landmark loca-
tion Pj(t−1). The current landmark position Pj(t) is ob-
tained by finding a nonlinear transformation Tt between
the moving (Wj,t−1(t)) and the fixed (Wj,1(1)) region.
Both image regions were transformed into vector-valued
images where a SIFT feature vector was computed for
each pixel x from the histogram of gradients around its
neighborhood (cell size of 2, 8 bins). The logDemons
framework was applied using the sum of squared differ-
ences of the features vectors as image forces, 3 resolution
levels, 6-20 iterations at each level and transformation
field smoothing σdiff = 2 pixels.

3. 3D tracking

Royer, et al. - Affine registration and mechani-
cal model. Royer, et al. proposed a 3D target track-
ing method, which combines an intensity-based approach
and mechanical regularization. The first step consists in
obtaining a tetrahedral mesh model from a manual seg-
mentation of the target in the initial image I(1). To
update the node positions of the model q(1) over time
t, a dense displacement field is computed by minimizing
the sum of squared intensity differences, for a piece-wise
affine transformation model, using a steepest gradient
optimization (step size α = 2× 10−6). To ensure robust-
ness, each node displacement is constrained by internal
forces of a mass-spring-damper system (spring stiffness
3.0, spring damping 1.0, nodal velocity damping 2.7),
which is associated with the tetrahedral mesh.
Banerjee, et al. - Block matching and local regis-
tration. The anatomical landmark tracking approach
of Banerjee, et al. consists of two rigid registration
steps. In the global 4D tracking step, the whole liver
volume is tracked by combining registrations to the pre-
vious and reference frame using the register-to-reference-

by-tracking strategy [3]. This is followed by the local
3D registration step, where the tracking result from the
previous step is refined by performing registration on the
neighborhood region close to the anatomical landmark
j, using the register-to-reference strategy [5]. Both steps
use block-matching, with normalized cross correlation as
similarity metric, followed by an outlier rejection scheme.
Finally the rigid transformation is estimated from the
trusted block-matching results [5].

4. Decision fusion

To improve accuracy and robustness [17, 76], we com-
bined the tracking results of all previously described
methods (four 2D or two 3D methods) by computing for
each frame t the median position of the tracked points
Pj(t) from these methods. Taking the median minimizes
the absolute difference between the individual results and
their combined value [93] and hence is robust to outliers
(i.e. minority of predictions being bad). It assumes all
results to be equally likely and should be extended to a
weighted median if methods provide reliable uncertain-
ties.

C. Temporal prediction for latency compensation

Conformal radiotherapy and IMRT treatments are
usually delivered using MLCs. In image-guided dynamic
MLC tracking, the accuracy of the target localization
and treatment can be affected by the latency between
the target motion and the MLC response [63]. The over-
all system latency is given by the sum of image formation,
image processing and system adjustment latency. Image
formation times depend on the US system and acquisition
protocol, e.g. imaging depth and aperture, frame rate, di-
mensionality and transducer frequency. The latency due
to image processing include run-times of motion estima-
tion and temporal prediction algorithms. The duration
for repositioning and adjusting a MLC ranges from 50 to
200 ms, depending on the target shift [28, 41, 42, 63, 66].
For example, approximately 50 ms are necessary to repo-
sition the MLC for target shifts of 0.2-1.3 mm, 80 ms for
2 mm, and 200 ms for 5-6 mm [63].

To compensate for the aforementioned system latency
∆t, we forecast at time t the landmark position Pj(t+∆t)
at horizon ∆t by using the available tracking positions
[Pj(1), . . . , Pj(t)] and the temporal prediction approach
proposed in [81]. This approach considered the median
results of four methods, namely a linear adaptive filter
[84], second order polynomial adaptive filter, support vec-
tor regression [67] and kernel density estimation [69], as
this previously provided improved results in comparison
to the individual results [81]. Simulated annealing was
used to optimize the method parameters for the motion
trace of each Pj , based on leave-one-subject-out cross
validation on the sequences in the test set. Finally, the
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method used the median parameters from the population
excluding the subject. For short latencies (∆t ≤ 150 ms)
the linear adaptive filter provided similar results as the
median (0.68 vs. 0.62 mm) while having a much reduced
run-time (1.3 vs. 21.2 ms) [81]. Hence both median fu-
sion and linear adaptive filter were investigated in this
work.

D. Treatment margins

Safety margins are required in the planning of all RT
treatments, to compensate for known sources of error
and ensure that the planned dose is delivered to the tar-
get [83]. Safety margins are added to the clinical target
volume (CTV) and result in the planning target volume
(PTV) [34].

Motion in the context of radiation therapy is defined
as the displacement of target tissues between the plan-
ning CT image and treatment. Inter-fraction motion is
the daily motion at the start of each treatment fraction,
which can be minimized by correct patient positioning.
Intra-fraction motion can occur during treatment due to
patient movement or physiological processes, i.e. respi-
ration. Errors in radiotherapy can be classified into sys-
tematic and random errors. For an individual patient,
their systematic and random errors are their mean and
standard deviation daily target displacements from their
target position at planning (preparation) over all frac-
tions, respectively. The population systematic and ran-
dom errors are the standard deviation and root mean
square of the individual patient systematic and random
errors, respectively. Systematic errors occur in treatment
preparation and include errors from set up (mainly due
to patient positioning) and organ motion. Random er-
rors occur during treatment and are caused by set up
errors and organ motion [83]. The latter is comprised of
inter-fraction motion, i.e. day-to-day motion, and intra-
fraction motion, i.e. motion during treatment due for
example to respiration.

Approximations have been proposed to estimate the
margin sizes using so-called margin recipes, e.g. [9, 35,
77]. These generally assume that the magnitude of the
motion is < 10 mm, errors < 3 mm [35] and error com-
ponents are Gaussian distributed and base the width of
the margin on the sum of the variances of the contrib-
utory errors [83]. In this study we investigate the size
of treatment margins required because of intra-fraction
errors from respiratory motion. Inter-fraction errors, for
example due to differences in patient positioning, are not
investigated since the collected data does not provide this
information.

E. Evaluation

We compared the performance of the tracking methods
described in Section II B on the test set (see Appendix

A), consisting of a total of 85 point-landmarks (e.g. ves-
sel centers) in 39 2D sequences, and 22 point-landmarks
(e.g. vessel bifurcations) in 14 3D sequences, which the
observers were confident to be able to reliably annotate.
In the following we describe the evaluation scheme used
to validate and quantify the tracking and the prediction
accuracy.

1. Tracking error

Three observers were asked to manually annotate the
corresponding position of the initial point Pj(1) in 10%
of randomly selected images I(t̂) from each sequence.
The number of annotated frames/volumes per sequence
is listed in Tables IV, ?? (2D) and V (3D). After review
and eventual subsequent adjustment of the annotations
by an additional observer, we computed the mean of the
three annotations, denoted as P̂j(t̂). Following the same
error metrics as in [17], the tracking error (TE) is calcu-
lated for each annotated frame I(t̂) and landmark j as

TEj(t̂) = ||Pj(t̂) − P̂j(t̂)||, (1)

where ||.|| is the Euclidean distance between the esti-
mated landmark position Pj(t̂) and its mean manual an-

notation P̂j(t̂). Results were then summarized by mean,
standard deviation (Std) and 95th percentile of the sin-
gle distribution including all TEj(t̂) belonging to a par-
ticular subgroup. These subgroups were the individual
landmarks j, and landmark dimensionality (2D or 3D).

For baseline comparison and to estimate the motion
magnitude of the landmarks, we included the case of no
tracking, defined as

NoTEj(t̂) = ||Pj(1) − P̂j(t̂)||. (2)

2. Directional error

To assess the error in the main motion directions inde-
pendently of the US probe orientation, we first determine
the motion directions via principle component analysis
(PCA) of each landmark trajectory, see Appendix B for
details. The directional error is then computed as

DTEj,i(t̂) = pj,i(t̂) − p̂j,i(t̂) ∈ R
D, (3)

where pj,i(t̂) and p̂j,i(t̂) are the projections of P̄j(t̂) and

P̂j(t̂), respectively, onto the PCA space. Finally, we sum-
marize the results by the mean and Std of the single
distribution including all DTEj,i(t̂) belonging to a par-
ticular subgroup, as above. Directional errors (1st and
2nd PCA components) are reported only for 2D results,
as these are used in this work to predict elliptical shaped
treatment margins.
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3. Prediction error

The error measures described in Sections II E 1 and
II E 2 were also used to evaluate the prediction errors at
time t̂∗:

PEj(t̂
∗) = ||PPj(t̂

∗) − P̂j(t̂
∗)|| (4)

and

DPEj,i(t̂
∗) = ppj,i(t̂

∗) − p̂j,i(t̂
∗), (5)

where PPj(t∗) ∈ RD is the predicted position of land-
mark j at time t∗ = t + ∆t (see Section II C) and
ppj,i(t∗) ∈ R is its projection in the ith eigendirection.

The prediction performance was compared to the case
of doing no temporal prediction, i.e. assuming no motion
during ∆t:

NoPEj(t̂
∗) = ||Pj(t) − P̂j(t̂

∗)||, (6)

with Pj(t) being the results of the considered tracking
method.

4. Margin calculation

To illustrate the effect of the different methods on ther-
apy margins, we employed a common recipe for calculat-
ing margins to compensate for intra-fraction motion er-
rors, i.e. assuming zero set-up and delineation errors.
Specifically, we used the population-based 3D margin
recipe from van Herk, et al. [35] given by:

mPTV = 2.5Σ + 1.64(σ − σp) ≈ 2.5Σ + 0.7σ
′, (7)

where Σ =
√

Σ2
m + Σ2

s + Σ2
d denotes the Std of the sys-

tematic error, which is composed of the motion error
Std (Σm), the setup error Std (Σs), and the delineation
error (Σd). The Std of the random error is given by

σ =
√

σ
2
m + σ

2
s + σ

2
p, with motion error Std (σm), setup

error Std (σs), and penumbra width Std (σp). The ap-
proximation using σ

′ =
√

σ
2
m + σ

2
s is valid for σp = 3.2

mm, σ ∈ [0, 5] mm and big (diameter > 20mm) CTVs
of circular shape [35]. This recipe ensures that the CTV
is fully covered by 95% of the prescribed dose for 90% of
the patient population. As mentioned above, setup and
delineation errors are unknown and hence set to zero in
this work, i.e. Σs = Σd = σs = 0.

The intra-fraction motion errors Σm and σm are de-
termined from the mean and Std of the ith directional
errors (DE) of J landmarks and K time points [9] via

Mi =
1

J

J
∑

j=1

µj,i, Σm,i =

√

√

√

√

1

J

J
∑

j=1

(µj,i − Mi)2 (8)

and

σm,i =

√

√

√

√

1

J

J
∑

j=1

σ2
j,i, (9)

where

µj,i =
K

∑

k

DEj,i(t̂
∗

k)/K, (10)

σj,i =

√

√

√

√

K
∑

k

(DEj,i(t̂∗k) − µj,i)2/K (11)

and DE stands for either DTE or DPE as defined in
Eqs. (3) and (5).

III. RESULTS

A. 2D tracking

The results of the 2D point-landmark tracking on the
test set are summarized in Table I. The mean TE ranges
from 1.2 mm to 3.4 mm for the methods submitted to
MICCAI 2015 CLUST, with best results achieved by Hal-
lack, et al.. Fusing the results of all tracking methods
improved accuracy by 24-73% in comparison to the indi-
vidual results. Yet these errors are higher than the inter-
observer variability, with mean (95%) TE of the three
observers < 0.5 (1.1) mm. The tracking error distribu-
tions are shown in Figure 2.

To assess the robustness of all methods, we quantified
the percentage of failures on the test set, i.e. the per-
centage of landmark results for which TE > 3 mm or TE
> 5 mm, see Table I. The fusion method achieved the
highest robustness, with TE > 5 mm in only 1.0% of the
landmark results and TE > 3 mm in 4.3%.

There was low correlation between the motion magni-
tude of the landmarks and the tracking errors, with the
sample Pearson correlation coefficients ρ ranging from
0.01 to 0.25. Correlation between TE and imaging cen-
ter frequency (see Tables IV and ??, surrogate measure
for image quality) was found to be low for all methods
(ρ ∈ [0.06, 0.18]). We also found low correlation between
the tracking error (TE) and Std of the observers’ error
(ρ ∈ [0.02, 0.12]).

The mean run-time per frame, determined per se-
quence, was per method at most 41 ms (Makhinya &
Goksel) to 228 ms (Kondo), see Table I. The tracking
method of Makhinya & Goksel was faster than the US
acquisition frame-rate for all sequences.

B. 3D tracking

The results of 3D tracking on the test set are shown in
Table II. On average, the highest accuracy and fastest
run-time were achieved by Royer, et al., with TE of
1.7±0.9 mm and 350 ms per volume. The percentages
of failures, for which TE > 3 mm, ranged between 8.4%
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and 8.7%, while for only 0.8-1.7% of annotated landmarks
TE was < 5 mm.

As before, we investigated if the tracking error is corre-
lated with the motion of the landmarks and found weak
sample Pearson correlation coefficients ρ = 0.29 and 0.39
for Royer, et al. and Banerjee, et al., respectively. Low
correlation was also found between TE and Std of the
observers TE for Royer, et al. (ρ = 0.36) and Banerjee,
et al. (ρ = 0.11). Moderate correlation (ρ = 0.44 and
0.48) was only found between tracking errors and center
frequency of the imaging acquisition (see Table V) for
each landmark j.

C. Temporal prediction

Forecasting of the landmark motion traces was eval-
uated only for 2D sequences, as these have a sufficient
amount of long sequences to adapt the temporal predic-
tion model. Furthermore, run-times of the proposed 2D
tracking methods are short enough to not create a great
burden for the prediction, and hence allow envisioning
clinical applicability of such a guidance system. On the
contrary, the fastest 3D tracking approach (Royer, et al.)
requires 350 ms and 3D acquisition (with a large enough
field of view to reliably capture respiratory motion) and
MLC tracking add another approximately 170 ms [38] to
the system latency. Hence the prediction horizon needs
to be greater than 500 ms. In addition, the short 3D se-
quences, which were available for this study, do not allow
to train all temporal prediction methods. Therefore we
did not include 3D forecasting in this work. 3D guidance
from 2D motion predictions can be achieved by carefully
aligning the US transducer with the main direction of the
respiratory motion, calibrating the US coordinate system
with the treatment coordinate system, and employing a
4D motion model [64, 82].

Figure 3 compares the mean prediction error (MPE)
of the linear adaptive filter and decision fusion predic-
tion. Predictions are obtained from leave-one-subject-
out cross-validation on Fusion (the most accurate) and
Makhinya & Goksel (the fastest) tracking results on 2D
test data. When considering each tracking strategy, using
temporal prediction resulted in lower errors than without
prediction for all horizons ∆t ∈ {150, 300, 400, 600, 1000}
ms, apart from the result of Fusion for ∆t = 150 ms,
where MPE = 1.44 (1.43) mm for median (no) predic-
tion. Linear adaptive filters achieved the highest accu-
racy for short latencies (∆t = 150 ms, MPE = 1.10 mm
for Fusion tracking). For ∆t = 300 ms results are very
similar, while for higher ∆t the median-based prediction
outperforms the linear filter by 9% to 44% (3% to 49%)
for Fusion (Makhinya & Goksel) tracking. In all cases,
errors increased with latency, suggesting that shorter la-
tencies are preferable.

D. Treatment margins and strategies

We investigate the trade-off between accuracy and run-
time by comparing the treatment margins required for
the following three motion compensation strategies: A.
fusion tracking and median prediction method (total run-
time 251 ms) with 400 ms latency; B. fast tracking by
Makhinya & Goksel and linear adaptive filter (run-time
42 ms) with 150 ms latency; and C. fusion tracking and
linear filter (run-time 235 ms) with 150 ms latency. Even
though fusion tracking would require a speed-up by a fac-
tor of 5.6 for strategy C to become feasible, we included
it to investigate the potential benefit of such a speed-up.
The latencies chosen for strategies A and B include algo-
rithm run-time, and re-positioning and adjustments time
of the treatment beam. We considered approximately
150 ms and 100 ms for strategies A and B, respectively,
as times that are needed to adjust the treatment beam
[63]. These latencies increase with the magnitude of the
target position shift (see Sec. II D), which depends on
the time difference between consecutive position estima-
tions, given by the tracking algorithm run-time. The
three strategies are compared to (i) only tracking with
the two aforementioned approaches (no prediction); (ii)
the mid-ventilation approach [91, 92], where the time-
weighted mean position of the tracked landmark P̄j over
the first three breathing cycles is used as landmark loca-
tion throughout therapy; and (iii) the case of no motion
compensation, i.e. without tracking. Results are sum-
marized in Table III.

Table III also lists the safety margins mPTV =
{mi,PTV } due to respiration, computed as described in
Eqs. (7) and (8) in the main motion directions i ∈
{1; 2}. Compared to the baseline (no tracking), mPTV

can be reduced by 62-84% and 29-69% in each direc-
tion when using tracking without and with temporal pre-
diction, respectively. For the mid-ventilation approach,
mPTV reduction is 14-32% (Fusion tracking) and 13-31%
(Makhinya & Goksel tracking method) in each direction.
Strategies characterized by lower error variance, such as
C, result in smaller margins. Figure 4 illustrates the mov-
ing margin ellipse for one representative landmark and
breathing cycle, and compares Strategy C to the baseline
of no tracking and mid-ventilation. It can be observed
that the fixed margins (no tracking, mid-ventilation) re-
quire larger margins to not miss the moving vessel cen-
ter, while Strategy C is able to stay close to it. The
population-based margins do not ensure that all targets
are fully encompassed by the PTV 100% of the time, such
as in end-inhale positions (see t = 23.70 s in Figure 4,
bottom row).

In addition, we considered a spherical CTV with 50
mm diameter, representing the central cross-section of a
stage T2 to T3a liver tumor [2], and added the result-
ing elliptical-shape 2D margins. The PTV is then the
ellipsoid with semi-axes [m1,PTV , m2,PTV , 0] + CTV ra-
dius. The margin volume (Vm = PTV - CTV) is reduced
from 73390 mm3 (no tracking) to 51294 mm3 (margin
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volume reduction rVm = 30%) when employing the mid-
ventilation margins (based on the mid-position from Fu-
sion tracking), and to 13234 mm3 (82%) and 12649 mm3

(83%) by strategy C without and with temporal predic-
tion, respectively.

To incorporate motion prediction in the out-of-plane
direction, we considered the same 3rd component of the
ellipsoidal margin of size m3,PTV = 3 mm [80] for all
strategies, see last column of Table III. The margin vol-
ume is now reduced from 90072 mm3 (no tracking) to
65308 mm3 (3D margin volume reduction rVm,3D =
27%) when using the mid-position from Fusion tracking;
24748 mm3 (73%) when using strategy A with temporal
prediction; and 22031 mm3 (76%) when using strategy
C with temporal prediction.

IV. DISCUSSION

A. Respiratory motion estimation

When comparing individual 2D tracking methods sub-
mitted to the 2015 MICCAI CLUST competition (see
Sections II B), the combination of optical-flow and model
based tracking proposed by Makhinya & Goksel was the
only real-time approach, while ranking second in terms
of accuracy. Its main strength is the combination of sev-
eral fast tracking strategies. The highest accuracy was
achieved by the diffeomorphic logDemons image registra-
tion by Hallack, et al., by using dense features and hav-
ing the most flexible transformation model. The KCF in
the Fourier space of Kondo had the highest run-time and
failed in tracking one sequence. The CNN-based block-
matching method from Nuori & Rothberg had the overall
lowest accuracy and robustness, with a mean TE of 3.4
mm and 19% of failures. While learning a suitable simi-
larity measure by the CNN has potentials, its drawback
is the need for a large dataset of manual annotations for
training.

Computing the median value of the results from all 2D
tracking methods yielded on average the highest land-
mark tracking accuracy (0.9 mm) and robustness (< 1%
failures). This reduced mean motion by 86%, but re-
quired the run-time of at least the slowest method (228
ms). When comparing to the previously published 2D
tracking results of CLUST 2014 [17], mean errors of the
individual submitted methods were in a similar range, i.e.
from 1.4 mm to 2.1 mm. Four out of 6 compared indi-
vidual approaches could achieve real-time performance.
Similar to this work, considering the median tracking re-
sults of all submitted methods improved the mean track-
ing error to 1.2 mm and 1.6% failures, which are higher
than the presented results. Yet this comparison is only
qualitative, as the CLUST 2014 evaluation was based on
a smaller dataset and slightly different manual annota-
tions. Recently, after the on-site MICCAI 2015 CLUST
event, Shepard, et al. validated a GPU implementation of
a learning-based block-matching approach on the CLUST

2015 data [73]. Compared to the proposed median fusion
approach, this method achieved real-time performance
(4-14 ms vs. 228 ms), lower mean tracking error (0.72
mm vs. 0.92 mm) but higher error Std (1.25 mm vs. 0.98
mm). Future work should extend results to the latest
submitted methods and evaluate their impact on margin
reductions.

For spatially predicting the 3D position of the treat-
ment target, our 2D motion estimation and temporal pre-
diction results could be used as input to a 4D liver model
[54, 80]. Such an approach achieved in-vivo for the right
liver lobe of 8 subjects a spatio-temporal 3D mean pre-
diction accuracy of 2.4 (2.7) mm for a system latency of
150 (400) ms based on 2D US tracking (mean accuracy
0.9 mm) and a population 4D motion model [64]. Note
that improved performance was observed for the central
liver region, which is closer to the typical US plane, and
by adapting the model to the subject using few breath-
hold observations [82].

For 3D tracking, the combination of an intensity-based
affine registration and a mechanical model proposed by
Royer, et al. was computationally much more efficient,
but still far from being real-time, than the block match-
ing algorithm of Banerjee, et al.. The latter had a run
time of almost 11 seconds, which limits its applicability
in clinical practice. Accuracy of these two methods was
comparable (MTE = 1.7 and 1.8 mm) and greater than
two of the 2D algorithms. Furthermore, averaging the
tracking results did not improve performance. Fusing re-
sults from more methods might improve accuracy. These
results are generally improved compared to the ones of
CLUST 2014, where a 3D mean tracking error between
2.5 mm and 4.6 mm on a smaller dataset was reported
[17].

The tracking performance was generally not depen-
dent on the motion magnitude of 2D landmarks nor im-
age quality. When considering the 3D case, the mod-
erate correlations of tracking error with motion magni-
tude and image quality, together with lower volume rates,
suggest that advances in 4D image resolution could im-
prove results. Another aspect to take into account is the
difficulty of visually inspecting and annotating 3D se-
quences. This is supported by the higher intra-observer
variability of the manual annotations in 3D, as shown
by the mean TE of the observers in Table II (mean
TE3D ∈ [1.19, 1.36] mm) vs. Table I (mean TE2D ∈
[0.44, 0.47] mm). This difference is still substantial even
when approximately adjusting for differences due to 2D
vs. 3D measures, i.e. mean TE3D

2D ∈[0.53, 0.58] mm,

where TE3D
2D(t̂) =

√

3 TE2
2D(t̂)/2 which assumes equal

error components [17].

A limitation of this work is that we were not able to
quantify potential errors that may be introduced by the
US guidance system. Ultrasound-based tracking of hep-
atic vessels for the purpose of radiotherapy relies on ac-
curate spatial calibration, which enables transformation
of pixel locations in the ultrasound image to treatment
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room coordinates. Geometrical accuracy and precision of
US localization of < 1 mm can be achieved [47], however
care must be taken to ensure the calibration is subject
to strict quality assurance [55]. Another source of error
is speed of sound (SOS) error [25]. Most US systems as-
sume a fixed SOS of 1540 ms−1 for all tissues, however
SOS varies with tissue type potentially causing inaccu-
rate measurement of the change in depth of a hepatic
vessel as the subject breathes. Assuming a SOS in liver
of 1595 ms−1 [53] and a maximum axial vessel displace-
ment of 20 mm, SOS will give an maximum error in ves-
sel motion of approximately 0.7 mm. Methods for the
correction of SOS error have been explored in depth by
Fontanarosa et al. [25] and future work should incorpo-
rate such approaches.

In a real treatment scenario, delays of the treatment
system introduce errors in the estimation of the target
position during therapy. Hence we quantified the predic-
tion errors using two approaches proposed in [81], namely
a fast linear adaptive filter and a median fusion of four
linear and non-linear methods, see Section II C. These
approaches were tested on the fastest (Makhinya & Gok-
sel) and most accurate (Fusion) tracking results. For the
four compared combinations, prediction errors increased
by 39% to 73% with prediction horizons from 150 to 1000
ms, see Figure 3. Despite being currently unfeasible, the
lowest error (mean PE = 1.1 mm) is obtained by strat-
egy C (Fusion tracking + linear adaptive filter for 150
ms latency). When comparing strategy B (based on a
fast tracking method, which requires shorter prediction
horizons) to A (more accurate tracking with longer hori-
zon), the mean prediction errors are similar while the Std
almost doubled for strategy B, leading to substantially
increased margins, see Section IV B. This investigation
shows that the trade-off between a faster, less accurate
versus a slower, more accurate tracking method can be
hard to judge and should be quantified in the system
context.

The tracking and prediction performances were worse
than the observer annotation accuracy, indicating the
potential for additional improvements. The American
Association of Physicists in Medicine recommends for
external-beam radiation therapy the use of respiratory
management when the target motion is greater than 5
mm [42]. Therefore, errors of target prediction should
also not exceed 5 mm. Overall this was not yet achieved
by any automatic method and observers had difficulties
in 3D. Yet for the most accurate 2D and 3D tracking
method, TE was greater than 5 mm in only 0.95% and
0.84% of the 2D and 3D images, respectively. With lower
tracking errors and much lower number of failures, re-
sults have substantially improved compared to those of
CLUST 2014 [17]. For 2D prediction, errors were greater
than 5 mm in 3.25%, 4.19%, and 1.31% of the images for
strategies A, B and C, respectively.

B. Impact on treatment margins

We investigated how the trade-off between accuracy
and speed of tracking methods affects the treatment sys-
tem performance, by combining tracking with tempo-
ral prediction to compensate for the corresponding sys-
tem latency. The system performance was quantified by
means of required treatment margins to compensate for
intra-fraction motion. This showed that for a tumor of 50
mm diameter, the most accurate tracking method com-
bined with temporal prediction (strategy A) reduces the
volume of healthy tissue which gets irradiated by 79%
in comparison to no tracking. Trading tracking accuracy
against speed (strategy B) was counterproductive, with
margin volumes being only reduced by 57%. Speeding-
up the accurate tracking to achieve strategy C provided
another reduction by 4% over strategy A, which amounts
to 2425 mm3 spared healthy tissue. Margin reductions
are much lower for the mid-ventilation approach (30%)
than for any tracking method.

Margin size generally increases with DPE. An excep-
tion is strategy B, no prediction versus strategy A, no
prediction, which have similar error in the first mo-
tion component of the prediction errors (1st DPEs)
(0.27±3.02 vs. 0.23±3.18 mm) but quite different mar-
gins (7.17 vs. 4.52 mm). This comes from large differ-
ences in the standard deviations of the systematic er-
ror Σm,1 (2.11 vs. 0.89 mm) between the two methods.
The discrepancies in ranges of mean PE ([0.79, 17.09] vs.
[1.19, 6.31] mm) and Std PE (2.84 vs. 1.97 mm) hinted
at such an effect. Hence tracking and prediction errors
should be assessed not only with regard to their mean
errors but also to their error variation.

Respiratory motion per image sequence followed a
Gaussian distribution only in 24.7%. In fact, respiratory
motion follows per cycle a path similar to a sin4 func-
tion, which is not normally distributed [68]. In addition,
landmark positions can drift over time, influencing the
motion distribution and leading to multi-modal distri-
butions. After tracking, residual errors were more often
Gaussian distributed (62.3%) and 95th percentiles sub-
stantially reduced. Based on results from [36, 68], which
showed the applicability of the margin recipe for similar
distributions and motion amplitudes below 10 mm, we
conclude that the margin recipe can be applied to the
tracked data.

Our analysis has focused on 2D tissue tracking, which,
considering the limited validation options and increased
image acquisition and processing times of 3D tracking,
may be the more practical to implement. Liver mo-
tion is typically greatest in the superior-inferior (SI) and
anterior-posterior (AP) directions with left-right (LR)
motion being significantly smaller. In some studies, typ-
ical liver motion in the LR direction is reported to be
< 2 mm [1, 15] and therefore relatively small PTV mar-
gins to account for this motion could be applied in the
LR directions. This relies on the accurate alignment of
the 2D transducer with the SI/AP plane, which may be
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assisted by optical tracking of the transducer. To incor-
porate motion uncertainties in the out-of-plane direction,
we considered the same margin size m3,PTV = 3 mm for
all strategies in Table III. Slightly smaller margin reduc-
tions were obtained: from 76% to 73% for strategy A
with temporal prediction, from 83% to 76% for strategy
C with temporal prediction, and from 26-27% to 29-30%
for mid-ventilation for added m3,PTV = 3 mm. Note that
for these margin calculations zero out-of-plane motion
was assumed (m3,PTV = 0). Increasing m3,PTV leads to
larger margins and reduced margin reductions (73% to
76%, mid-ventilation 26-27% to 29-30% for m3,PTV = 3
mm). However the ranking of the strategies remains the
same [57]. As in other studies [22, 68], we neglect setup
errors as we focus on intra-fraction motion mitigation.
Margins of all strategies will need to be increased by the
same amount to compensate for setup errors. Similarly
as for out-of-plane motion, this will increase the required
margins, but ranking of the strategies would remain the
same.

V. CONCLUSIONS

In this work, we compared different tracking and
prediction techniques, and combined results in a com-
mon margin recipe to predict treatment margins for
ultrasound-guided radiation therapy of the liver.

We first validated tracking on a large dataset of 2D
and 3D US sequences of the liver of volunteers under
free breathing. We compared several approaches, as part
of the 2015 MICCAI CLUST workshop. The tracking of
anatomical landmarks achieved an overall accuracy of 0.9
mm and 1.7 mm for 2D and 3D sequences, respectively.
In 2D, the best results were obtained by fusing all pro-
posed algorithms by computing the median estimation
per frame. In 3D the combination of intensity-based reg-
istration and mechanical model of Royer, et al. obtained
the highest accuracy.

Adding temporal prediction is fundamental to compen-
sate for the treatment system latency and hence to cor-
rectly compensate for the target motion during therapy.
Therefore, we compared two 2D prediction approaches,
namely using a fast linear adaptive filter or the median
of four linear and non-linear methods. These were ap-
plied to the 2D tracking results. Both high tracking ac-
curacy and short prediction horizon (i.e. high computa-
tional speed) positively influence the accuracy of tempo-
ral prediction. The lowest prediction error of 1.1 mm was
achieved by strategy C. Given the high run-time of the
fusion algorithm, this strategy is not yet feasible. Yet
computational improvements and implementation opti-
mization could reduce the current run-time.

Accurate compensation for target motion results in a
potential reduction of 79% to 83% of the treatment mar-
gin volume. The mid-ventilation strategy could reduce
this treatment margin volume by only 29-30%.

The proposed tracking and prediction approach can

be applied to US guidance in IMRTs to continuously
estimate the motion of the organ under treatment and
hence reduce treatment margins, which decreases dose to
healthy tissue. Due to a duty cycle of 100% compared
to gating with the patient free-breathing or in breath-
holding, this approach would allow for shorter and more
efficient treatments.

Future work includes testing of the motion compensa-
tion framework on patient data, use of 4D motion mod-
els [80] of the liver for the spatial (and hence spatio-
temporal) prediction of the tumor motion.
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Appendix A: Data

Tables IV and V list all relevant information on the
2D and 3D US sequences, respectively, namely: size
and length, spatial and temporal resolutions, number
of annotations and US scanner details. We used the
following convention to assign sequence names:
InstitutionAbbreviation-InstitutionSubject
Number-RepetitionNumber.
For example, ETH-01-2 corresponds to the US sequence
of subject no. 1 and repetition number 2 provided
by ETH Zurich. When the repetition number is not
provided, only one sequence was acquired for the
correspondent subject.
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Appendix B: PCA

We used Principal Components Analysis (PCA) to
compute the directional tracking error, see Section II E 2.
For each tracking method and landmark j, PCA consists
in solving the eigenproblem:

Cwi = λiwi, ∀i ∈ [1, . . . , D], (B1)

where C = [ ¯̂Pj(1), . . . , ¯̂Pj(T̂ )]T × [ ¯̂Pj(1), . . . , ¯̂Pj(T̂ )] is the
covariance matrix of the centered manual annotations of

the D-dimensional landmark j ¯̂Pj(t̂) = P̂j(t̂) − πj , with

πj = 1/T̂
∑T̂

t̂=1 P̂j(t) the mean position and T̂ the num-
ber of annotated frames for landmark j. λi are the sorted
eigenvalues (λi > λi+1) and wi the corresponding eigen-
vectors. For each ith eigendirection, we calculated the

trajectory projection p̂j,i(t̂) = wT
i

¯̂Pj(t̂). Similarly, we
then project the tracking trajectories Pj onto the PCA
space by pj,i(t̂) = wT

i (Pj(t̂) − πj).
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image registration scheme for real-time liver ultrasound
tracking using normalized gradient fields. Challenge on
Liver Ultrasound Tracking CLUST 2014 p. 29 (2014)

[45] Korreman, S.S.: Motion in radiotherapy: photon ther-
apy. Physics in Medicine & Biology 57(23), R161 (2012)

[46] Korreman, S.S., Juhler-Nøttrup, T., Boyer, A.L.: Respi-
ratory gated beam delivery cannot facilitate margin re-
duction, unless combined with respiratory correlated im-
age guidance. Radiotherapy and Oncology 86(1), 61–68
(2008)

[47] Lachaine, M., Falco, T.: Intrafractional prostate motion
management with the clarity autoscan system. Medical
Physics 1(1) (2013)

[48] Lattanzi, J., McNeeley, S., Hanlon, A., Schultheiss, T.E.,
Hanks, G.E.: Ultrasound-based stereotactic guidance of

This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

rt
ic

le
precision conformal external beam radiation therapy in
clinically localized prostate cancer. Urology 55(1), 73–78
(2000)

[49] Lediju, M., Byram, B.C., Harris, E.J., Evans, P.M., Bam-
ber, J.C., et al.: 3D liver tracking using a matrix array:
Implications for ultrasonic guidance of IMRT. In: Ultra-
sonics Symposium, pp. 1628–1631. IEEE (2010)

[50] Lediju, M.A., Pihl, M.J., Dahl, J.J., Trahey, G.E.: Quan-
titative assessment of the magnitude, impact and spatial
extent of ultrasonic clutter. Ultrasonic Imaging 30(3),
151–168 (2008)

[51] Liu, C., Yuen, J., Torralba, A.: SIFT flow: Dense cor-
respondence across scenes and its applications. Trans-
actions on Pattern Analysis and Machine Intelligence
33(5), 978–994 (2011)

[52] Lucas, B., Kanade, T.: An iterative image registration
technique with an application to stereo vision. In: Pro-
ceedings of Imaging Understanding Workshop, pp. 121–
130 (1981)

[53] Mast, T.D.: Empirical relationships between acoustic pa-
rameters in human soft tissues. Acoustics Research Let-
ters Online 1(2), 37–42 (2000)

[54] McClelland, J.R., Hawkes, D.J., Schaeffter, T., King,
A.P.: Respiratory motion models: a review. Medical
Image Analysis 17(1), 19–42 (2013)

[55] Molloy, J.A., Chan, G., Markovic, A., McNeeley, S.,
Pfeiffer, D., Salter, B., Tome, W.A.: Quality assurance of
us-guided external beam radiotherapy for prostate can-
cer: Report of AAPM task group 154. Medical Physics
38(2), 857–871 (2011)

[56] The proceedings of MICCAI 2015 CLUST are available
at http://clust.ethz.ch/clust2015.html

[57] The margin volume reduction of method a over method
b is given by

rV (a,b)
m

=
V (a)

PTV − VCTV

V (b)
PTV − VCTV

− 1 =
s r(a)

1,PTV r(a)
2,PTV − VCTV

s r(b)
1,PTV r(b)

2,PTV − VCTV

− 1,

where ri,PTV = mi,PTV + ri,CTV , s = 4π/3 r3,PTV , and
the same m3,PTV is added in the 3rd dimension. The
ranking of the methods remain the same for all s > 0, as
rV (a,b)

m < rV (c,b)
m if r(a)

1,PTV r(a)
2,PTV < r(c)

1,PTV r(c)
2,PTV .

[58] Omari, E.A., Erickson, B., Ehlers, C., Quiroz, F., Noid,
G., Cooper, D.T., Lachaine, M., Li, X.A.: Preliminary
results on the feasibility of using ultrasound to monitor
intrafractional motion during radiation therapy for pan-
creatic cancer. Medical Physics 43(9), 5252–5260 (2016)

[59] OShea, T., Bamber, J., Fontanarosa, D., van der Meer,
S., Verhaegen, F., Harris, E.: Review of ultrasound
image guidance in external beam radiotherapy part II:
intra-fraction motion management and novel applica-
tions. Physics in Medicine and Biology 61, R90 (2016)

[60] OShea, T.P., Bamber, J.C., Harris, E.J.: Temporal regu-
larization of ultrasound-based liver motion estimation for
image-guided radiation therapy. Medical Physics 43(1),
455–464 (2016)

[61] Ozhasoglu, C., Murphy, M.J.: Issues in respiratory mo-
tion compensation during external-beam radiotherapy.
International Journal of Radiation Oncology* Biology*
Physics 52(5), 1389–1399 (2002)

[62] Parkes, M.J., Green, S., Cashmore, J., Stevens, A.M.,
Clutton-Brock, T.H., Bel, A., Lens, E., Lohr, F., Boda-
Heggemann, J.: In regard to Boda-Heggemann et al.

International Journal of Radiation Oncology Biology
Physics 96(3), 709–710 (2016)

[63] Poulsen, P.R., Cho, B., Sawant, A., Ruan, D., Keall,
P.J.: Detailed analysis of latencies in image-based dy-
namic MLC tracking. Medical Physics 37(9), 4998–5005
(2010)

[64] Preiswerk, F., De Luca, V., Arnold, P., Celicanin, Z.,
Petrusca, L., Tanner, C., Bieri, O., Salomir, R., Cattin,
P.C.: Model-guided respiratory organ motion prediction
of the liver from 2D ultrasound. Medical Image Analysis
18(5), 740–751 (2014)

[65] Prescribing, I.: recording and reporting photon beam
therapy (supplement to ICRU report 50). ICRU report
62 (1999)

[66] Ren, Q., Nishioka, S., Shirato, H., Berbeco, R.I.: Adap-
tive prediction of respiratory motion for motion compen-
sation radiotherapy. Physics in Medicine and Biology
52(22), 6651 (2007)

[67] Riaz, N., Shanker, P., Wiersma, R., Gudmundsson, O.,
Mao, W., Widrow, B., Xing, L.: Predicting respiratory
tumor motion with multi-dimensional adaptive filters and
support vector regression. Physics in Medicine and Biol-
ogy 54(19), 5735 (2009)

[68] Rit, S., Van Herk, M., Zijp, L., Sonke, J.J.: Quantifi-
cation of the variability of diaphragm motion and impli-
cations for treatment margin construction. International
Journal of Radiation Oncology * Biology * Physics 82(3),
e399–e407 (2012)

[69] Ruan, D.: Kernel density estimation-based real-time pre-
diction for respiratory motion. Physics in Medicine and
Biology 55(5), 1311 (2010)

[70] Schwaab, J., Prall, M., Sarti, C., Kaderka, R., Bert, C.,
Kurz, C., Parodi, K., Günther, M., Jenne, J.: Ultrasound
tracking for intra-fractional motion compensation in ra-
diation therapy. Physica Medica: European Journal of
Medical Physics 30(5), 578–582 (2014)
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FIG. 1. Examples of first frame I(1) of representative
sequences of the training data: (top row) 2D sequences
and (bottom row) 3D sequences. Point-landmarks Pj(1)
are depicted in yellow.

FIG. 2. 2D tracking error distributions up to 5 mm.

FIG. 3. Summary of the mean prediction error vs. pre-
diction horizon (∆t) for the test set in case of tracking
based on Fusion or Makhinya & Goksel combined with
no prediction, linear or median prediction.

FIG. 4. Illustration of prediction results with margins
for a representative case (MPEj = 1.44 mm). (Top row,
left) fixed region from reference image I(1) with magenta
cross for P̂j(1) and green dots showing the predicted po-
sitions Pj(t) by strategy C for 5 consecutive breathing
cycles. (Top row, right) plot of corresponding results
from strategy C (green line) vs. initial (dash-dot ma-
genta line) and mid-ventilation positions (dashed cyan
line) over time, with black circles highlighting 5 results
shown in details. Manually annotated P̂j(t̂) are displayed
as blue crosses. (Bottom row) Images for the 5 high-
lighted results. Green ellipse represents margin required
for strategy C, centered in predicted position Pj(t) (green
dot). Magenta dash-dotted ellipse shows margin required
for no tracking strategy and hence is centered at P̂j(1)
(magenta cross). The fixed margin of the mid-ventilation
strategy is depicted in cyan.
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TABLE I. Results of 2D tracking on the test set. Best results among the automatic methods are highlighted in bold. (D)TE:
(directional) tracking error; 1st (2nd): error in the first (second) direction of motion.

TE [mm] Mean TE Landmarks [%] 1st DTE [mm] 2nd DTE [mm] Run-time
Method Mean Std 95% range [mm] TE>3mm >5mm Mean Std Mean Std [ms]
No tracking 6.45 5.11 16.48 [2.76, 17.06] 69.72 51.09 -0.87 7.99 0.35 1.72 -
Nuori & Rothberg 3.35 5.21 14.19 [0.46, 23.03] 27.36 18.58 1.44 5.14 0.49 3.10 100
Kondo 2.91 10.52 5.18 [0.33, 56.21] 9.32 5.19 -1.32 10.20 -0.49 3.63 228
Makhinya & Goksel 1.44 2.80 3.62 [0.49, 16.67] 5.60 3.75 0.28 2.75 0.32 1.47 41
Hallack, et al. 1.21 3.17 2.82 [0.34, 16.13] 4.63 2.18 0.09 3.29 0.04 0.85 208
Fusion 0.92 0.98 2.78 [0.34, 3.52] 4.31 0.95 0.23 1.15 0.13 0.65 228
Observer 1 0.46 0.36 1.13 [0.22, 1.28] 0.09 0.00 -0.06 0.44 -0.08 0.37 -
Observer 3 0.47 0.34 1.08 [0.23, 1.33] 0.07 0.00 0.05 0.44 -0.01 0.38 -
Observer 2 0.44 0.32 1.03 [0.21, 1.20] 0.04 0.00 0.01 0.42 0.09 0.33 -
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TABLE II. Results of 3D tracking on the test set. Best results among the automatic methods are highlighted in bold.
Tracking error [mm] Mean TE Landmarks [%] with Run-time

Method Mean Std 95% range [mm] TE>3mm TE>5mm [ms]
No tracking 5.54 3.77 12.17 [1.95, 10.66] 68.35 48.10 -
Royer, et al. 1.74 0.92 3.65 [0.79, 3.54] 8.86 0.84 350
Banerjee, et al. 1.80 1.64 3.41 [0.78, 5.24] 8.44 1.69 10860
Fusion 1.74 1.15 3.49 [0.78, 3.71] 8.44 0.84 10860
Observer 3 1.36 1.14 3.37 [0.55, 4.68] 6.33 2.53 -
Observer 1 1.27 1.07 3.47 [0.33, 3.25] 9.28 0.84 -
Observer 2 1.19 0.83 2.89 [0.44, 2.40] 4.64 0.00 -
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TABLE III. Summary of prediction errors (PE), directional prediction errors (DPE) in the first (1st) and second (2nd) direction
of motion, 2D margins (mPTV ) and margin volume reduction relative to no tracking for 2D margins (rVm) and when considering
an additional fixed margin in the 3rd direction m3,PTV = 3 mm (rVm,3D). Three selected motion-compensation strategies are
compared, namely: A. slower, more accurate tracking & 400 ms latency; B. faster, less accurate tracking & 150 ms latency; C.
same accurate tracking as strategy A, but accelerated 5.3 times & 150 ms latency (currently unfeasible) on the test set. The
mid-ventilation results for strategy C are the same as for A, as both use the same tracking method.

PE [mm] Mean PE 1st DPE [mm] 2nd DPE [mm] mP T V [mm] rVm rVm,3D

Strategy Mean Std 95% range [mm] Mean Std Mean Std 1st D 2nd D [%] [%]
No tracking 6.13 4.59 15.20 [2.76, 13.79] -0.16 14.65 0.54 3.06 19.20 5.00 0 0

A
No prediction 2.63 1.97 6.20 [1.19, 6.31] 0.23 3.18 0.13 0.80 4.52 1.66 -77 -70
Prediction 1.63 1.46 4.28 [0.60, 4.57] 0.26 2.01 0.15 0.82 3.76 1.74 -79 -73
Mid-ventilation 5.13 4.09 13.35 [1.98, 14.06] 0.31 6.34 0.49 1.56 13.05 4.30 -30 -27

B
No prediction 1.87 2.84 4.52 [0.79, 17.09] 0.27 3.02 0.32 1.50 7.17 3.35 -59 -54
Prediction 1.63 2.89 4.23 [0.64, 18.43] 0.28 2.91 0.31 1.54 7.39 3.50 -57 -52
Mid-ventilation 5.27 4.13 13.61 [2.16, 13.55] 0.34 6.46 0.72 1.57 13.32 4.33 -29 -26

C
No prediction 1.43 1.20 3.57 [0.65, 4.01] 0.23 1.71 0.13 0.70 3.30 1.55 -82 -75
Prediction 1.10 1.08 3.09 [0.46, 3.70] 0.25 1.34 0.12 0.72 3.03 1.61 -83 -76
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TABLE IV. Summary of the 2D challenge data (part 1 of 2). The sequence name (first column) of the test set is listed in
regular black font. The training sequences, for which all available annotations were provided, are highlighted in bold font. The
test data provided at the on-site challenge are underlined.

Sequence info Annotation Acquisition info
Sequence Im.size Im.res. No. Im.rate No.No.ann. Scanner Probe Center

[pix/vox] [mm] frames [Hz] ann. frames freq.[MHz]
CIL-01 480×640 0.30 1342 22 2 144 Ultrasonix MDP 4DC7-3/40 4.5
CIL-02 480×640 0.40 1075 17 1 131 Ultrasonix MDP 4DC7-3/40 4.5
CIL-03 480×640 0.40 1070 18 2 138 Ultrasonix MDP 4DC7-3/40 4.5
CIL-04 480×640 0.50 895 15 2 112 Ultrasonix MDP 4DC7-3/40 4.5
CIL-05 480×640 0.30 1430 23 2 161 Ultrasonix MDP 4DC7-3/40 4.5
ETH-01-1 490×570 0.40 3652 15 2 366 Siemens Antares CH4-1 2.22
ETH-01-2 482×608 0.41 4650 15 2 466 Siemens Antares CH4-1 2.22
ETH-02-1 472×565 0.42 2620 15 1 263 Siemens Antares CH4-1 2.22
ETH-02-2 462×590 0.41 4826 15 1 483 Siemens Antares CH4-1 2.22
ETH-03-1 473×437 0.28 4588 14 1 460 Siemens Antares CH4-1 2.22
ETH-03-2 464×442 0.28 4191 13 1 420 Siemens Antares CH4-1 2.22
ETH-04-1 469×523 0.40 5247 16 2 525 Siemens Antares CH4-1 1.82
ETH-04-2 480×652 0.38 4510 14 2 452 Siemens Antares CH4-1 1.82
ETH-05-1 462×563 0.42 4615 15 2 463 Siemens Antares CH4-1 1.82
ETH-05-2 477×556 0.40 3829 13 2 384 Siemens Antares CH4-1 1.82
ETH-06-1 462×580 0.40 5244 16 1 525 Siemens Antares CH4-1 2.00
ETH-06-2 476×604 0.38 5165 16 1 518 Siemens Antares CH4-1 2.00
ETH-07-1 475×548 0.37 5586 17 2 560 Siemens Antares CH4-1 1.82
ETH-07-2 467×568 0.37 5582 17 2 559 Siemens Antares CH4-1 1.82
ETH-08-1 466×562 0.36 5574 17 2 558 Siemens Antares CH4-1 1.82
ETH-08-2 466×589 0.36 5577 17 2 559 Siemens Antares CH4-1 1.82
ETH-09-1 464×560 0.40 4587 15 4 460 Siemens Antares CH4-1 1.82
ETH-09-2 479×566 0.42 4590 15 3 460 Siemens Antares CH4-1 1.82
ETH-10-1 462×589 0.36 5578 17 3 559 Siemens Antares CH4-1 1.82
ETH-10-2 470×595 0.36 5584 17 3 559 Siemens Antares CH4-1 1.82
ETH-11-1 478×552 0.45 4284 14 2 429 Siemens Antares CH4-1 2.22
ETH-11-2 476×541 0.45 3785 12.4 1 380 Siemens Antares CH4-1 2.22
ETH-12-1 264×313 0.71 14516 25 1 1453 Siemens Antares CH4-1 2.22
ETH-12-2 262×313 0.77 15640 25 1 1565 Siemens Antares CH4-1 2.22
ETH-13-1 268×304 0.71 9934 25 1 994 Siemens Antares CH4-1 2.00
ETH-13-2 268×304 0.71 10525 25 1 1054 Siemens Antares CH4-1 2.00
ICR-01 393×457 0.55×0.42 4858 23 3 608 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
ICR-02 393×457 0.55×0.42 3481 23 2 436 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
ICR-03 393×457 0.55×0.42 3481 23 3 436 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
ICR-04 393×457 0.55×0.42 3481 23 4 349 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
ICR-05 397×485 0.55×0.43 3481 20 2 348 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
ICR-06 397×485 0.55×0.43 3481 21 2 348 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
ICR-07 397×495 0.49×0.38 3481 23 2 348 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
ICR-08 399×495 0.50×0.39 3481 23 3 348 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
ICR-09 399×485 0.57×0.44 3481 19.9 2 349 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
ICR-10 397×495 0.49×0.38 3481 23.5 2 349 Elekta Clarity, Ultrasonix m4DC7-3/40 4.5
MED-01-1 408×512 0.41 2455 20 3 246 DiPhAs Fraunhofer VermonCLA 5.5
MED-02-1 408×512 0.41 2458 20 3 246 DiPhAs Fraunhofer VermonCLA 5.5
MED-02-2 408×512 0.41 2443 20 3 245 DiPhAs Fraunhofer VermonCLA 5.5
MED-02-3 408×512 0.41 2436 20 5 244 DiPhAs Fraunhofer VermonCLA 5.5
MED-03-1 408×512 0.41 2442 20 2 245 DiPhAs Fraunhofer VermonCLA 5.5
MED-03-2 408×512 0.41 2450 20 3 246 DiPhAs Fraunhofer VermonCLA 5.5
MED-04-1 524×591 0.35 3304 11 1 331 Zonare z.one C4-1 4.0
MED-05-1 524×591 0.35 3304 11 2 331 Zonare z.one C4-1 4.0
MED-06-1 408×512 0.41 2427 20 4 243 DiPhAs Fraunhofer VermonCLA 5.5
MED-06-2 408×512 0.41 2424 20 3 243 DiPhAs Fraunhofer VermonCLA 5.5
MED-07-1 408×512 0.41 2470 20 3 248 DiPhAs Fraunhofer VermonCLA 5.5
MED-07-2 408×512 0.41 2478 20 3 248 DiPhAs Fraunhofer VermonCLA 5.5
MED-07-3 408×512 0.41 2450 20 3 246 DiPhAs Fraunhofer VermonCLA 5.5
MED-07-4 408×512 0.41 2456 20 4 246 DiPhAs Fraunhofer VermonCLA 5.5
MED-08-1 524×591 0.35 3304 11 3 331 Zonare z.one C4-1 4.0
MED-08-2 524×591 0.35 3304 11 3 331 Zonare z.one C4-1 4.0
MED-09 408×512 0.48 2420 30 1 243 DiPhAs Fraunhofer VermonCLA 3.5 3.4
MED-10 408×512 0.45 2416 31 2 243 DiPhAs Fraunhofer VermonCLA 3.5 3.4
MED-11 408×512 0.45 2425 31 2 243 DiPhAs Fraunhofer VermonCLA 3.5 3.4
MED-12 408×512 0.48 2415 30 2 242 DiPhAs Fraunhofer VermonCLA 3.5 3.4
MED-13 475×687 0.27 3135 17 1 314 Zonare z.one C6-2 ∼4.0
MED-14 475×687 0.27 3855 17 2 386 Zonare z.one C6-2 ∼4.0
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TABLE V. Summary of the 3D challenge data. The sequence name (first column) of the test set is listed in regular black font.
The training sequences, for which all available annotations were provided, are highlighted in bold font. The test data provided
at the on-site challenge are underlined.

Sequence info Annotation Acquisition info
Sequence Im.size Im.res. No. Im.rate No.No.ann. Scanner Probe Center

[pix/vox] [mm] frames [Hz] ann. frames freq.[MHz]
EMC-01 192×246×117 1.14×0.59×1.19 79 6 1 8 Philips iU22 X6-1 3.2
EMC-02 192×246×117 1.14×0.59×1.19 54 6 4 6 Philips iU22 X6-1 3.2
EMC-03 192×246×117 1.14×0.59×1.19 159 6 1 16 Philips iU22 X6-1 3.2
EMC-04 192×246×117 1.14×0.59×1.19 140 6 1 15 Philips iU22 X6-1 3.2
EMC-05 192×246×117 1.14×0.59×1.19 147 6 1 15 Philips iU22 X6-1 3.2
EMC-06-1 192×246×117 1.14×0.59×1.19 100 6 1 11 Philips iU22 X6-1 3.2
EMC-06-2 192×246×117 1.14×0.59×1.19 100 6 1 11 Philips iU22 X6-1 3.2
EMC-06-3 192×246×117 1.14×0.59×1.19 100 6 1 11 Philips iU22 X6-1 3.2
EMC-07-1 192×246×117 1.14×0.59×1.19 100 6 1 11 Philips iU22 X6-1 3.2
EMC-07-2 192×246×117 1.14×0.59×1.19 100 6 1 11 Philips iU22 X6-1 3.2
EMC-07-3 192×246×117 1.14×0.59×1.19 100 6 1 11 Philips iU22 X6-1 3.2
ICR-01 480×120×120 0.31×0.51×0.67 141 24 1 15 Siemens SC2000 4Z1c 2.8
ICR-02 480×120×120 0.31×0.51×0.67 141 24 1 20 Siemens SC2000 4Z1c 2.8
SMT-01 227×227×229 0.70 97 8 3 96 GE E9 4V-D 2.5
SMT-02 227×227×229 0.70 96 8 3 92-93 GE E9 4V-D 2.5
SMT-03 227×227×229 0.70 96 8 2 45-96 GE E9 4V-D 2.5
SMT-04 227×227×229 0.70 97 8 1 96 GE E9 4V-D 2.5
SMT-05 227×227×229 0.70 96 8 2 64-96 GE E9 4V-D 2.5
SMT-06 227×227×229 0.70 97 8 3 49-96 GE E9 4V-D 2.5
SMT-07 227×227×229 0.70 97 8 2 95 GE E9 4V-D 2.5
SMT-08 227×227×229 0.70 97 8 3 96 GE E9 4V-D 2.5
SMT-09 227×227×229 0.70 97 8 3 96 GE E9 4V-D 2.5

This article is protected by copyright. All rights reserved. 


	Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins 
	Abstract
	Introduction
	Materials and Methods
	Ultrasound data
	Tracking methods
	Tracking objective
	2D tracking
	3D tracking
	Decision fusion

	Temporal prediction for latency compensation
	Treatment margins
	Evaluation
	Tracking error
	Directional error
	Prediction error
	Margin calculation


	Results
	2D tracking
	3D tracking
	Temporal prediction
	Treatment margins and strategies

	Discussion
	Respiratory motion estimation
	Impact on treatment margins

	Conclusions
	Acknowledgments
	Data
	PCA
	References


