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ABSTRACT

Deep learning methods are capable of performing sophis-
ticated tasks when applied to a myriad of artificial intelli-
gent (AI) research fields. In this paper, we introduce a novel
approach to replace the inherently flawed beamforming step
during ultrasound image formation by applying deep learn-
ing directly to RF channel data. Specifically, we pose the
ultrasound beamforming process as a segmentation problem
and apply a fully convolutional neural network architecture
to segment anechoic cysts from surrounding tissue. We train
our network on a dataset created using the Field II ultrasound
simulation software to simulate plane wave imaging with a
single insonification angle. We demonstrate the success of
our architecture in extracting tissue information directly from
the raw channel data, which completely bypasses the beam-
forming step that would otherwise require multiple insonifi-
cation angles for plane wave imaging. Our simulated results
produce mean Dice coefficient of 0.98 ± 0.02, when measur-
ing the overlap between ground truth cyst locations and cyst
locations determined by the network. The proposed approach
is promising for developing dedicated deep-learning networks
to improve the real-time ultrasound image formation process.

Index Terms— Deep Learning, Beamforming, Ultra-
sound Imaging, Machine Learning, Image Segmentation.

1. INTRODUCTION

Medical ultrasound imaging uses high-frequency sound
waves to image biological tissue. An ultrasound probe con-
sisting of an array of elements transmits sound to a target
region that travels through the body and encounters acoustic
impedance mismatches that cause the waves to be reflected
back to the probe [1]. Advantages of ultrasound imaging over
other medical imaging modalities include real-time imaging
capabilities, mobility, cost-effectiveness, and lack of harmful
ionizing radiation [2]. Diagnostic applications of ultrasound
include breast cancer screening [3], liver tumor detection and
tracking [4] and blood vessel imaging [5].
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The ultrasound image formation process contains multi-
ple steps after the reflected signals are received by the ultra-
sound probe. The first step is beamforming, typically per-
formed in any array-based imaging method [6]. Beamform-
ing is applied to sensor array data – i.e., radio frequency (RF)
channel data – in order to achieve beam directionality and fo-
cusing. Beamforming is then followed by envelope detection,
log compression, filtering, and other post-processing steps.
One disadvantage of the beamforming step when applied to
plane wave imaging is that multiple insonification angles are
required to achieve reduced clutter and sufficient spatial reso-
lution, which reduces the potential for higher frame rates [7].
Therefore, transmission of multiple plane waves is not ideal
for achieving the highest frame rates possible when solving
the inverse problem for both 2D and 3D plane wave imaging
[8].

Seemingly unrelated to this particular challenge, deep
neural networks (DNNs) have recently achieved state-of-the-
art results in numerous AI tasks including image classification
[9], image segmentation [10], automatic speech recognition
[11] and gaming [12]. DNNs have also found applications in
ultrasound imaging, including locating the standard plane in
fetal ultrasound images [13], classifying liver [14] and breast
lesions [15], and tracking the left ventricle endocardium in
cardiac ultrasound images [16]. DNNs were recently applied
directly to the RF ultrasound channel data to compress and
recover ultrasound images [17] and to operate on sub-band
ultrasound channel data after conversion to the frequency do-
main [18]. However, to the authors’ knowledge, there are no
applications of DNN to investigate a direct image-to-image
transformation from RF channel data to an output represen-
tation understandable by a human, entirely bypassing both
beamforming and other post processing steps.

This work is the first to extract image details directly from
the received ultrasound channel data without beamforming.
We achieve this goal by employing a U-Net [10] type image-
to-image segmentation network that takes RF channel data
as the input and learns a transformation to the segmentation
mask of the scene. Three possible advantages include:

1. Speed - beamforming of plane wave data typically re-
quires multiple insonification angles that are combined
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Fig. 1. Fully convolutional encoder-decoder architecture with skip connections for ultrasound image segmentation.

into an image with receive beamforming. We aim to re-
duce the number of transmissions required and thereby
expect to increase the imaging speed beyond current
capabilities with plane wave imaging.

2. Noise suppression - the trained neural network is taught
to suppress typical artifacts that would be present in
plane wave images created from a single insonificaton
angle, such as acoustic clutter, which appears as a hazy
structure that “fills in” anechoic regions [19, 20]

3. Accuracy - the beamforming process is only an approx-
imate solution to the inverse problem that is not entirely
accurate in the presence of multiple tissues with mul-
tiple varying acoustic properties. With enough train-
ing data, we expect the DNN to learn a better inversion
function.

In Section 2 of this paper, we provide an overview of
the neural network model we employ. In Section 3, we dis-
cuss details of the dataset we used to train our network along
with the parameters we used for training. Section 4 details
our achievements when applying this model to simulated ane-
choic cysts of varying sizes and locations and when embed-
ded in tissues with varying sound speeds. Finally, we offer
concluding remarks in Section 5.

2. ARCHITECTURE

Our neural network architecture is based on the widely used
U-Net [10] segmentation network. The architecture, as seen
from Fig. 1, is fully convolutional and has two major parts –
a contracting encoder path and an expanding decoder path.

In the contracting encoder, we have convolutional (Conv)
layers and max pooling (MaxPool) layers. For each convo-
lutional (Conv) layer, we employ 3 × 3 convolutions with a
stride of 1, zero padding the input in order to ensure the sizes
of the input and output match. We use rectified linear units
(ReLU) [21] as our non-linearity in the Conv layers. For the
max-pooling layers, we employ a pool size of 2×2 with stride
set to 2 in each direction as well. Each max pool layer thus has
an output size half that of the input (hence the term ‘contract-

ing’). To offset this, we also increase the number of feature
channels learned by 2 after every max pooling step.

In the expanding decoder, we have up-convolutional (Up-
Conv) layers, also termed transposed convolutions in addition
to regular convolutional layers. The UpConv layers reverse
the reduction in size caused by the convolution and max pool-
ing layers in the encoder by learning a mapping to an output
size twice the size of the input. As a consequence, we also
halve the number of feature channels learned in the output.
The output of each UpConv layer is then concatenated with
the features generated by the segment of the encoder corre-
sponding to the same scale, before being passed to the next
part of the decoder. The reason for this is two-fold: to explic-
itly make the network consider fine details at that scale that
might have been lost during the down sampling process, and
to allow the gradient to back-propagate more easily through
the network through these ‘skip’ or ‘residual’ connections
[22], reducing training time and training data requirements.

The final layer of the network is a 1 × 1 convolutional
layer with a sigmoid non-linear function. The output is a per-
pixel confidence value of whether the pixel corresponds to the
cyst region (predict 1) or tissue region (predict 0) based on the
learned multi-scale features. We train the network end-to-end,
using the negative of a differentiable formulation of the Dice
similarity coefficient (Eq. 1) as our training loss.

Dice(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

(1)

where X corresponds to vectorized predicted segmentation
mask and Y corresponds to the vectorized ground truth mask.

3. EXPERIMENTAL SETUP

3.1. Field II Dataset

In order to train our network, we simulate a large dataset using
the open-source Field II [23] ultrasound simulation software.
All simulations considered a single, water-filled anechoic cyst
in normal tissue with our region of interest maintained be-
tween -19.2 mm and +19.2 mm in the lateral direction and
between 30 mm and 80 mm in the axial direction. The trans-
ducer was modeled after an Alpinion L3-8 linear array trans-
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Fig. 2. Example of RF channel data that is typically beamformed to obtain a readable ultrasound image. A ground truth mask
of the anechoic cyst location is compared to the the mask predicted by our neural network. Our network provides a clearer view
of the cyst location when compared to the conventional ultrasound image created with a single plane wave transmission.

ducer with parameters provided in Table 1. Plane wave imag-
ing was implemented [24] with a single insonification angle
of 0◦. RF channel data corresponding to a total of 21 differ-

Table 1. Ultrasound transducer parameters
Parameter Value
Element number 128
Pitch 0.30 mm
Aperture 38.4 mm
Element width 0.24 mm
Transmit Frequency 8 MHz
Sampling Frequency 40 MHz

ent sound speeds (1440 m/s to 1640 m/s in increments of 10
m/s), 7 cyst radii (2 mm to 8 mm in increments of 1 mm), 13
lateral positions (-15 mm to 15 mm in steps of 2.5 mm) for
the cyst center, and 17 axial locations (35 mm to 75 mm in
steps of 2.5 mm) for the cyst center were considered, yield-
ing a total of 32,487 simulated RF channel data inputs after
10,000 machine hours on a high performance cluster. We then
performed a 80:20 split on this data, retaining 25,989 images
as training data and using the remaining 6,498 as testing data.
We further augmented only the training data by flipping it lat-
erally to simulate imaging the same regions with the probe
flipped laterally. We resized the original channel data from an
initial dimensionality of 2440*128 to 256*128 in order to fit
it in memory, and normalized by the maximum absolute value
to restrict the amplitude range from -1 to +1.

3.2. Network Implementation

All neural network code was written in the Keras API [25] on
top of a TensorFlow [26] backend. Our network was trained
for 20 epochs using the Adam optimizer [27] with a learn-
ing rate of 1e−5 on negative Dice loss (Eq. 1). Weights of
all neurons in the network were initialized using the Glorot
uniform initialization scheme. Mini-batch size was chosen to
be 16 samples to attain a good trade-off between memory re-

quirements and convergence speed. The training of the neural
network was performed on an NVIDIA Tesla P40 GPU with
24 GB of memory.

4. RESULTS AND DISCUSSIONS

4.1. Qualitative Assessment

As visible from Fig. 2, deep learning enables a new kind
of ultrasound image – one that does not depend on the clas-
sical method of beamforming. Using a fully convolutional
encoder-decoder architecture, we extract details directly from
the non human-readable RF channel data and produce a seg-
mentation mask for the region of interest. This also allows
us to overcome common challenges with ultrasound, like the
presence of acoustic clutter when using a single insonification
angle in plane wave imaging. We also ignore the presence of
speckle, which provides better object detectability, although
this feature can be considered a limitation for techniques that
rely on the presence of speckle.

As a consequence, the final output image is more inter-
pretable than the corresponding beamformed image created
with a single plane wave insonification. In addition to requir-
ing less time to create this image, thereby increasing possible
real-time frame rates, this display method would require less
expert training to understand. Our method can also serve as
supplemental information to experts in the case of difficult-to-
discern tissue features in traditional beamformed ultrasound
images. In addition, it can also be employed as part of a real-
time fully automated robotic tracking system [28].

4.2. Objective evaluation

To objectively assess the performance of the neural network,
we employ four evaluation criteria:

1. Dice score - This is the loss metric that was used to
train the neural network as described by Eq. 1. The
mean Dice scores for the test data samples was evalu-
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Fig. 3. Performance variation of the trained network versus different simulation conditions. We varied cyst radius (r), speed
of sound (c), axial position of cyst center (z), and lateral position of cyst center (x), aggregating over all other parameters, and
calculated the mean Dice similarity coefficient (DSC). The error bars show ± one standard deviation.

ated to be a promisingly high value of 0.9815 ± one
standard deviation of 0.0222.

2. Contrast - Contrast is a common measure of image
quality, particularly when imaging cysts. It measures
the signal intensity ratio between two tissues of inter-
est, in our case between that of the cyst and the tissue:

Contrast = 20 log10

(
So

Si

)
,

where Si and So are the mean signal intensities inside
and outside the cyst, respectively. This measurement
provides quantitative insight into how discernible the
cyst is from its surroundings. A major advantage of
our approach to image formation is that segmentation
into cyst and non-cyst regions is produced with high
confidence, which translates to very high contrast. For
the example images shown in Fig. 2, the cyst contrast
in the conventionally beamformed ultrasound image is
10.15 dB, while that of the image obtained from the
network outputs is 33.77 dB, which translates to a 23.62
dB improvement in contrast for this example. Overall,
the average contrast for network outputs was evaluated
to be 45.85 dB (when excluding results with infinite
contrast due to all pixels being correctly classified).

3. Recall - Also known as specificity, recall is the frac-
tion of positive examples that are correctly labeled as
positive. For our network, we define a test example as
correctly labeled if at least 75% of the cyst pixels were
correctly labeled as belonging to a cyst. Our network
yields a recall of 0.9977. This metric indicates that clin-
icians (and potentiality robots) will accurately detect at
least 75% of cyst over 99% of the time.

4. Time - The time it takes to display our DNN-based
images is related to our ability to increase the real-
time capabilities of plane wave imaging. We processed
the 6,498 test images in 53 seconds using the DNN,
which translates to a frame rate of approximately 122.6
frames/s on our single-threaded CPU. Using the same
data and computer, conventional beamforming took
3.4 hours, which translates to a frame rate of approx-
imately 0.5 frames/s. When plane wave imaging is
implemented on commercial scanners with custom
computing hardware, the frame rates are more like 350
frames/s for 40 insonification angles [24]. However,

we are only using one insonification angle, which in-
dicates that our approach can reduce the acquisition
time for plane wave imaging and still achieve real time
frame rates while enhancing contrast.

4.3. Performance variations with simulation parameters

We evaluated the Dice coefficient produced by our network as
functions of four simulation parameters: cyst radius (r), speed
of sound (c), axial position of cyst center (z), and lateral po-
sition of cyst center (x). We calculated the average Dice co-
efficients when fixing the parameter of interest and averaging
over all other parameters. The results are shown in Fig. 3.

In each case, the mean Dice coefficients was always
greater than 0.94, regardless of variations in the four simu-
lated parameters. Varations in Dice coefficients were most
sensitive to cyst size. The Dice coefficients were lower for
smaller cysts, with performance monotonically increasing as
cyst size increased. This increase with size is likely a result
of smaller cysts activating fewer neurons that the network can
aggregate for a prediction, and also mirrors traditional ultra-
sound imaging, where cysts of smaller size are more difficult
to discern [29]. Otherwise, the network appears to be more
robust to changes in sound speed and the axial and lateral
positions of the anechoic cyst.

5. CONCLUSIONS

This work is the first to demonstrate the feasibility of em-
ploying deep learning as an alternative to traditional ultra-
sound image formation and beamforming. Our network is
a fully convolutional encoder-decoder that aggregates infor-
mation learned from the input channel data at multiple scales
in order to directly produce a segmentation map of tissue. As
a consequence, not only would our approach be faster than
traditional plane wave ultrasound imaging, but it also learns
to recognize and suppress speckle and clutter noise. Future
work includes training and testing with multiple cysts and
point targets as well as extending the framework to an end-
to-end DNN that can automatically identify, track, and recog-
nize objects of interest. We also note that application to point
targets has previously shown promise in related photoacoustic
imaging deep learning methods [30, 31].
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