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Abstract—Short-lag spatial coherence (SLSC) imaging displays
the spatial coherence between backscattered ultrasound echoes
instead of their signal amplitudes and is more robust to noise
and clutter artifacts when compared to traditional delay-and-
sum (DAS) B-mode imaging. However, SLSC imaging does not
consider the content of images formed with different lags, and
thus does not exploit the differences in tissue texture at each
short lag value. Our proposed method improves SLSC imaging
by weighting the addition of lag values (i.e., M-weighting) and by
applying Robust Principal Component Analysis (RPCA) to search
for a low dimensional subspace for projecting coherence images
created with different lag values. The RPCA-based projections
are considered to be de-noised versions of the originals that are
then weighted and added across lags to yield a final Robust
Short-Lag Spatial Coherence (R-SLSC) image. Our approach was
tested on simulation, phantom, and in vivo liver data. Relative
to DAS B-mode images, the mean contrast, signal-to-noise ratio
(SNR), and contrast-to-noise ratio (CNR) improvements with R-
SLSC images are 21.22 dB, 2.54 and 2.36 respectively, when
averaged over simulated, phantom, and in vivo data and over
all lags considered which corresponds to mean improvements
of 96.4%, 121.2% and 120.5% respectively. When compared to
SLSC images, the corresponding mean improvements with R-
SLSC images were 7.38 dB, 1.52 and 1.30, respectively, (i.e.,
mean improvements of 14.5%, 50.5% and 43.2%, respectively).
Results show great promise for smoothing out the tissue texture
of SLSC images and enhancing anechoic or hypoechoic target
visibility at higher lag values which could be useful in clinical
tasks such as breast cyst visualization, liver vessel tracking, and
obese patient imaging.

I. INTRODUCTION

D ISPLAYING the spatial coherence of backscattered ultra-
sound waves is a promising alternative to generate ultra-

sound image contrast when compared to traditional, amplitude-
based delay-and-sum (DAS) beamforming. This alternative is
motivated by the van Cittert Zernike (VCZ) theorem applied
to ultrasound[1], [2], [3], which states that for an incoherent
source and a spatially incoherent medium, the expected spatial
coherence is the squared Fourier transform of the product of
the transmit beam intensity distribution and the reflectivity
profile of the insonified medium.

The VCZ theorem supported ultrasound-based investiga-
tions by Mallart and Fink[4], Liu and Waag[5], and Bamber
et al.[6], and led to the development of short-lag spatial co-
herence (SLSC)[7] imaging. SLSC imaging has since demon-
strated remarkable improvements over traditional ultrasound
B-mode imaging when visualizing liver tissue[8], endocardial
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borders[9], fetal anatomical features[10], and point-like targets
in the presence of noise[11]. A suite of traditional ultrasound
transducer arrays (i.e., linear[7], curvilinear[8], phased[9],
and 2D matrix[12], [13] arrays) were demonstrated to be
compatible with SLSC imaging. This new imaging method
was additionally extended to photoacoustic imaging to im-
prove the visibility of prostate brachytherapy seeds[14], to
improve signal contrast when imaging with low-energy, pulsed
laser diodes[15] and to potentially guide minimally invasive
surgeries [16]. Additional work in this area has weighted SLSC
images with traditional DAS images [17] and utilized SLSC
beamforming to reduce clutter and sidelobes in photoacoustic
images [18].

SLSC imaging is implemented by computing the spatial
correlation between received signals at various element sep-
arations (or lags), then summing across the lags to generate
the final output image. In doing so, SLSC imaging inherently
weights all lags equally and does not consider differences in
tissue texture appearances when SLSC images are formed with
various combinations of lag values. One possibility to consider
texture differences is to apply uneven weighting to the lag
images prior to summation. Another possibility is to apply
linear dimensionality reduction.

Principal component analysis (PCA)[19] is a popular
method for linear dimensionality reduction, with wide-
ranging domains of application that include data mining [20],
neuroscience[21], and linear control systems[22]. PCA finds
the orthogonal directions of highest variance by taking the
singular value decomposition of a data matrix and preserving
the subspace corresponding to the largest singular values.
Assuming that data is corrupted by dense, low-magnitude,
Gaussian noise, PCA returns the maximum likelihood estimate
for an underlying subspace[23]. Projecting data onto this low-
dimensional, underlying subspace, then re-projecting to a high
dimensional space is generally a useful denoising technique
that eliminates spurious directions of variance corresponding
to noise in the data.

PCA was successfully applied to various ultrasound imaging
tasks, including motion estimation (by leveraging its signal
separation capabilities to reject decorrelation and noise) [24]
and on-line classification of arterial stenosis intensity[25].
However, one limitation of PCA is that it lacks robustness[26]
and displays a high sensitivity to outliers.

Robust Principal Component Analysis(RPCA)[26], [28],
[29] was developed to recover a low rank matrix from a matrix
of corrupted observations, particularly when the errors are
arbitrarily large. In addition, as stated in[26], in most cases
the low rank matrix can be recovered from most common
corruptions by solving a convex optimization problem. In
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the context of ultrasound imaging, RPCA was utilized to
automatically classify acoustic radiation force impulse (ARFI)
displacement profiles in the presence of high variance outlier
profiles[30] and to implement motion-based clutter reduction
[31].

In this paper, we propose a modification to the SLSC
algorithm to explicitly consider the content of coherence
images formed with different lags by applying RPCA to first
search for a low dimensional subspace, then project individual
coherence images onto this low dimensional subspace. We as-
sume that this approach enables us to denoise the observations
at higher lags and incorporate them in our imaging pipeline.
The projections are denoised versions of the originals that
are then weighted and summed across the lags to yield the
final Robust Short-Lag Spatial Coherence (R-SLSC) image.
We also consider the effect of weighting without applying
RPCA.

Our paper is organized as follows: Section II details the
background that motivated this work, specifically the SLSC
algorithm and the RPCA algorithm. Section III describes
our proposed R-SLSC method in detail. Section IV provides
details about our simulation, phantom and experimental data
and related evaluation metrics. Section V presents the results
of our study, while section VI discusses the strengths and
limitations of the proposed algorithm. We conclude our paper
in section VII.

II. BACKGROUND

A. Short-Lag Spatial Coherence (SLSC) Imaging

SLSC beamforming (as discussed extensively in [7], [11],
[33]) computes and displays the spatial coherence between
backscattered ultrasound echoes at different short lag values,
and thereby removes clutter artifacts. The ultrasound channel
data consists of echoes received by N equi-spaced detector
elements of an array. Assuming si is the time-delayed, zero
mean data received by the ith detector element, let a measure-
ment corresponding to the nth depth (in samples) of this data
be the signal si(n). The spatial covariance across the face of
the aperture is evaluated as:

Ĉ(m) =
1

N −m

N−m∑
i=1

n2∑
n=n1

si(n)si+m(n) (1)

where m is the lag (in number of elements) between two de-
tector elements of the array. The size of the correlation kernel
(ı.e., n2 − n1) is fixed to be approximately one wavelength
in order to maintain an axial resolution similar to that of
DAS B-mode images without compromising the stability of
the calculated coherence functions.

Eq. (1) is normalized by the individual variances of the two
scan lines being considered, and the spatial correlation R̂ at
lag m is:

R̂(m) =
1

N −m

N−m∑
i=1

∑n2

n=n1
si(n)si+m(n)√∑n2

n=n1
s2i (n)

∑n2

n=n1
s2i+m(n)

(2)

which results in a spatial coherence function. We integrate this
spatial coherence function over the first M lags to achieve a
SLSC image pixel:

Rsl =

∫ M

m=1

R̂(m)dm ≈
M∑
m=1

R̂(m) (3)

Eqs. (1)-(3) are repeated at various axial and lateral positions
to generate a SLSC image.

The coherence functions scale with the size of the aperture,
thus M is expressed in terms of a quantity Q, which is defined
to be the percentage fraction of the receive aperture over which
we are summing, ı.e.:

Q =
M

N
× 100% (4)

in order to standardize across various receive aperture sizes.

B. Robust Principal Component Analysis (RPCA)

RPCA[26], [28] is implemented by finding a low-rank
approximation A of a noisy observation matrix D, which can
be expressed as:

D = A+ E +N (5)

where A is the low-rank ground truth matrix, E is an error
matrix which is considered to be sparse but allowed to
have high magnitude errors, while N contains dense, low-
magnitude errors. The main objective is to calculate the lowest
rank A that approximates the data subject to the outlier errors
being sparse ı.e. ‖E‖0 ≤ K for some appropriately chosen
threshold K (where ‖.‖0 is the L0 norm, which counts the
number of non-zero entries in E). Writing out the Lagrangian
formulation, we obtain:

min
A,E

Rank(A) + λ‖E‖0 subject to D = A+E +N ≈ A+E

(6)
where λ is a penalty factor based on the quantity of outliers
present in data. Note that Eq. (6) is difficult to optimize as
it is non-convex. Relaxing the rank constraint to a nuclear
norm constraint and the L0 norm constraint to an L1 norm
constraint, we rewrite Eq. (6) as:

min
A,E
‖A‖∗ + λ‖E‖1 subject to D ≈ A+ E (7)

where the nuclear norm, ‖.‖∗, is the sum of the singular values
of a matrix. This relaxation is reasonable because the solution
to (7) is almost always the same as the solution to (6), as
proved in [26].

To solve Eq. (7), we utilized a numerical optimization
method based on the Augmented Lagrangian Multiplier
(ALM) [28] method. This solver relaxes Eq. (7) by solving for
the minimum of the Lagrangian L(A,E, Y, µ) of the problem,
where L(A,E, Y, µ) is defined as:

L(A,E, Y, µ) = ‖A‖∗ + λ‖E‖1 + 〈Y,D −A− E〉

+
µ

2
‖D −A− E‖2F

We used the MATLAB inexact ALM solver based on[28] and
hosted at[32] to perform RPCA.
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(a)

(b)

Fig. 1: (a) Summary of the the whole-image R-SLSC imaging process. The individual coherence images up to a specific lag
M are vectorized and stacked into a matrix. RPCA is performed on this data matrix, and the denoised coherence images are
weighted and summed across the lag dimension. Finally, the vectorization is reversed to yield the output R-SLSC image at lag
M. (b) Columnwise R-SLSC imaging is similar, with the exception that the whole image is subdivided into individual columns
for the denoising step. Patchwise R-SLSC imaging (not shown) denoises individual patches rather than columns.

III. PROPOSED ALGORITHM

A. Robust Short-Lag Spatial Coherence (R-SLSC) Imaging

If we define outliers in SLSC images as pixels with coher-
ence values that differ significantly from their surroundings
and from their values at other lags, we observe that SLSC
images formed with higher lags tend to have more outliers
[27]. These outliers adversely affect contrast, and thus reduce
the diagnostic utility of SLSC imaging. Consequently, we
hypothesize that filtering out these coherence outliers is an
important step in order to consider the additional information
that is provided at higher lag values.

We also hypothesize that because each image corresponds
to an observation of the same ground truth, we can treat the
images at the different lags as noisy, corrupted versions of this

ground truth, each affected differently by clutter and coherence
outliers. We can thus reformulate finding the optimal summa-
tion of the coherence images as a RPCA application[26], [28],
[29] and we call this combination R-SLSC.

The first step of R-SLSC is to perform SLSC beamforming
and generate the coherence images at various lags. Each of
these lag images is then vectorized as illustrated in Fig. 1a.
The vectorized lag images (up to a specific lag M) are stacked
horizontally to form the noisy data matrix D. This matrix D
is then fed into the RPCA algorithm, which returns a low
rank estimate that corresponds to A in Eq. (7), which is the
denoised data matrix, with both coherence outliers (stored in
E) and low magnitude dense noise (stored in N ) removed. We
then apply a weighted sum across the columns to generate the
vectorized output R-SLSC image corresponding to lag M. The
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weighting applied could be uniform (as in traditional SLSC
imaging), but we apply a linearly decreasing weighting scheme
(weight 1 to lag image 1, weight M−1

M to lag image 2, ...,
weight 1

M to lag image M) to enforce our prior knowledge that
SLSC image characteristics such as Contrast, CNR, SNR are
superior in the short-lag region. We call this weighting scheme
linear M-weighting. With linear M-weighting, the higher lag
value observations are primarily used to refine our estimate
of the data subspace for A in Eq. (7). The final step involves
reshaping the vectorized image to obtain the output R-SLSC
image corresponding to lag M.

We additionally note that we can vary the λ parameter (see
Eqn. 7) to apply a penalty factor to the quantity of coherence
outliers present. The λ value reported throughout this paper is
multiplied by 1√

size(D,1)
, where D is the data matrix being

considered. We chose λ to equal 1 unless otherwise stated.

B. Columnwise and Patchwise R-SLSC Imaging

With the addition of RPCA to SLSC imaging, one expected
concern with R-SLSC imaging is the additional processing
time. While real-time SLSC imaging has previously been
demonstrated [34], [35], performing real-time R-SLSC on the
entire image is not possible as currently implemented.

The bottleneck in R-SLSC processing times is the Singular
Value Decomposition (SVD) step of the RPCA algorithm. The
time complexity, O, of SVD is generally O(min(mn2,m2n)),
where m is the number of rows of the data matrix D and
n is the number of columns[42]. Thus, we hypothesize that
subdividing the large SVD problem into smaller SVDs, each
solved independently using parallel computing, will increase
algorithm speed.

We experimented with two methods for subdividing our
problem:

• Columnwise R-SLSC (summarized in Fig. 1b)
• Patchwise R-SLSC
To implement columnwise R-SLSC, the first step entails

performing SLSC beamforming and generating the coherence
images at the various lags. However, instead of vectorizing
the images, we extract a specific column from each of these
lag images (up to a specific lag M) and stack these extracted
columns horizontally to form the noisy data matrix D as
illustrated in Fig. 1b. We repeat this process across all columns
to achieve n independent RPCA subproblems (where n is the
number of columns). The RPCA subproblems are then solved,
and the results from each are combined to obtain the final
columnwise R-SLSC image corresponding to lag M.

The process for patchwise R-SLSC is similar, with the
exception that the independent subproblems correspond to
patches and not columns.

IV. EVALUATION METHODS

A. Simulation Data

Field II[36][37] was used to generate a numerical phantom
of width 50 mm, height 60 mm (located between 30 mm
and 90 mm depth) and transverse width 10 mm. A total
of 3,141,360 scatterers (corresponding to 20 scatterers per

TABLE I: Ultrasound Transducer and Image Acquisition Pa-
rameters

Experiments PICMUS
Aperture Width 19.2 mm 38.4 mm
Element Width 0.24 mm 0.27 mm

Number of Receive Elements 64 128
Pitch 0.30 mm 0.30 mm

Transmit Frequency 8 MHz 5.208 MHz
Sampling Frequency 40 MHz 20.832 MHz

Pulse Bandwidth 61% 67%

Fig. 2: Schematic diagram of phantom used for the plane wave
data. The red rectangle shows the anechoic target of interest
for our study.

resolution cell) were randomly placed in this volume, with
amplitudes that were randomly drawn from a standard normal
distribution. An anechoic cyst of diameter 4 mm was centered
at a depth of 60mm. Focused transmits with dynamic receive
were used to image the cyst. The parameters of the simu-
lated probe matched those of the Alpinion L3-8 linear array
transducer which was used to acquire experimental data (see
Table I for transducer and image acquisition parameters). The
sampling frequency was 40 MHz, and the center frequency
was 8.0 MHz. Additive white Gaussian noise of SNR -10
dB was added to the channel data and the summed signal
was bandpass filtered with cutoff frequencies equal to the -6
dB cutoff frequencies of the ultrasound transducer in order to
simulate acoustic noise received by the transducer[11], [33].

B. Experimental Phantom and In Vivo Data

Ultrasound data was acquired with an Alpinion E-Cube 12R
connected to an L3-8 linear ultrasound transducer. An 8mm
diameter cylindrical anechoic cyst target of a CIRS Model
054GS ultrasound phantom at a depth of 4cm was insonified.
The sampling frequency of the probe was 40 MHz and the
center frequency for the transmission was 8.0 MHz. The probe
possessed 128 elements, with only 64 allowed to receive
simultaneously at any point in time. Additional transducer and
image acquisition parameters are listed in Table I.

Using the same ultrasound system, a 4mm diameter vessel
located at a depth of 34mm in the liver of a healthy female was
imaged with approval from the Johns Hopkins University Insti-
tutional Review Board (Protocol HIRB00005688). The patch-
wise and columnwise R-SLSC methods were only applied to
this in vivo dataset. CPU parallelization was performed using
the parfor subroutine in MATLAB on an Intel(R) Core(TM)
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Simulation Experimental Phantom PICMUS In Vivo

(a) (b) (c) (d)

Fig. 3: Measured spatial coherence within regions of interest (ROIs) inside and outside anechoic or hypoechoic targets. The
lines show the means and the error bars show ± one standard deviation of the measured spatial correlation within each ROI.
The locations of the ROIs relative the cyst are shown in Figs. 4, 6, and 7 for the simulated, phantom, and PICMUS data,
respectively.

i7-4720HQ CPU with a clock speed of 2.60 GHz. This in vivo
dataset was additionally used to experiment with the direct
display of M-weighted SLSC images without applying RPCA
and to experiment with the optimal λ parameter for R-SLSC
imaging.

C. Plane Wave Data

In addition to simulation and experimental data acquired
with focused transmits, we tested our algorithm on the pub-
licly available plane wave experimental data provided through
the Plane-Wave Imaging Challenge in Medical Ultrasound
(PICMUS)[43], which was organized for the 2016 IEEE
International Ultrasonics Symposium. The data consisted of
75 steered plane wave sequences with an angular range
of -16 degrees to +16 degrees, acquired with a Verasonics
Vantage 256 research scanner and a L11 probe (Verasonics
Inc., Redmond WA). The probe specifications and acquisition
parameters are reported in Table I.

A CIRS Multi-Purpose Ultrasound Phantom (Model
040GSE) was imaged using this setup. Specifically, the region
corresponding to a -3dB and a +3dB cyst set against a speckle
background with a pair of anechoic targets was recorded. Both
cysts are located at a depth of 3cm and have diameters of 8
mm, while the anechoic targets are located at depths of 15mm
and 45mm, and are smaller with a diameter of 3mm. The
anechoic target located at 45mm depth was the focus of our
study, as highlighted by the red box in Fig. 2.

D. Image Quality Metrics

The contrast, signal-to-noise ratio (SNR) and contrast-to-
noise ratio (CNR) metrics were calculated for each data set,
as:

Contrast = 20 log10

(Si
So

)
(8)

with Si and So representing the mean signal intensities inside
and outside selected regions of interest (ROIs) at the same
image depth.

SNR =
So
σo

(9)

where σo is the standard deviation of the background ROI.

CNR =
|Si − So|√
σ2
i + σ2

o

(10)

where σi is the standard deviation of the signal in the chosen
ROI.

Note that SLSC images can contain negative pixels due
to potential negative correlations from signals that are out
of phase. However, we observed that these negative values
mostly appear in anechoic or hypoechoic regions, and they
are not significant (i.e., they are closer to 0 than −1). When
log compressing an image with negative values, the negative
correlations are converted to positive values that degrade the
image quality. Hence, our approach when calculating our
quality metrics and displaying our images was to set all
negative SLSC image pixels to zero.

To evaluate the PICMUS data and to enable past and future
users of the PICMUS dataset to compare their results with
our method, we additionally report a modified version of the
contrast evaluation script provided by the PICMUS challenge
organizers. The modified script calculates contrast as:

PICMUS Contrast = 20 log10

(
|Si − So|√

σ2
i+σ

2
o

2

)
(11)

All data analysis and beamforming was performed in MAT-
LAB (MathWorks Inc., Natick, MA).

V. RESULTS

A. Correlation Curves

The VCZ theorem predicts that when imaging diffuse scat-
terers like tissue, the expected spatial correlation across the
receive aperture is a triangle, with a peak of 1 at lag 0 and
a minimum of 0 at lag N − 1, where N is the total number
of elements in the transmit aperture. However, when imaging
anechoic or hypoechoic regions (like the cyst or the vessel),
the spatial correlation is expected to significantly drop from 1
to 0 in the short-lag region, with low magnitude oscillations
about 0 as lag increases beyond the initial drop [7].
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(a) B-Mode (b) SLSC

(c) R-SLSC

Q=7.8% Q=15.6% Q=31.2% Q=46.9% Q=62.5%

Fig. 4: (a) DAS B-mode image of an anechoic cyst simulated with Field II[36], [37]. The white rectangles show the ROIs
used to calculate Contrast, SNR, CNR, and the correlation curves in Fig. 3a. (b) SLSC images corresponding to Q-values of
7.8%, 15.6%, 31.2%, 46.9% and 62.5%, respectively. (c) Corresponding R-SLSC images created with the same Q-values. All
images are displayed with 60 dB dynamic range.

We measured the spatial correlation for a pair of rectangular
windows (one in the background, and the other within the
target), resulting in the correlation curves shown in Fig. 3.
The lines correspond to the mean value measured within each
ROI, while the errorbars display ± one standard deviation of
the measured correlation within each ROI.

The experimental correlation curves generally agree with
our expectations. One notable difference between the sim-
ulated and experimental coherence curves is the significant
decrease in coherence at lag 1 in simulation, which occurs
because of the presence of noise in the simulation[38], [39].
We additionally note that the standard deviations (represented
by the amplitude of the error bars) appear to increase as we
increase lag both inside and outside anechoic regions. This
increase is generally greater outside rather than inside the
anechoic region with the exception of the simulation result.
Fig. 3 provides evidence that noise and outliers increase as
lag increases, which is one primary motivation for pursuing
R-SLSC imaging, as we assume that the ground truth for each
correlation estimate lies somewhere within the error bars.

B. Simulation Results
B-mode, SLSC, and R-SLSC images of the simulated ane-

choic cyst target are displayed in Fig. 4. The rectangles in the
B-mode image (Fig. 4a) correspond to the regions inside and
outside the cyst used to calculate contrast, SNR and CNR, and
they were maintained for all performance metrics calculated
for this phantom. Fig. 4b shows the SLSC beamformed outputs
corresponding to Q-values of 7.8%, 15.6%, 31.2%, 46.9 %
and 62.5%, respectively, while Fig. 4c shows the R-SLSC
beamformed outputs for the same Q-values. All images are
displayed with a 60 dB dynamic range.

The mean gain in R-SLSC contrast (for all Q values
considered) is 1.48 dB, when compared to that of SLSC, which

corresponds to a mean gain of 4.53%. The mean gains in R-
SLSC SNR and CNR (when compared to SLSC SNR and
CNR) are 0.35 and 0.35, respectively, which correspond to
improvements of 22.72% and 22.87%. The contrast and CNR
of SLSC and R-SLSC generally outperform DAS B-Mode in
this simulation result, as shown in Fig. 5 (left), particularly at
the higher lag values.

C. Experimental Phantom Results

A B-mode image of the anechoic cyst phantom target is
displayed in Fig. 6a with white rectangles that demarcate the
regions inside and outside the cyst being considered when
evaluating contrast, SNR and CNR. The same ROIs are used
for all performance metrics calculated with this phantom.
SLSC and R-SLSC images of this phantom are displayed in
Fig. 6b and 6c, respectively (created with Q-values equal to
7.8%, 15.6%, 31.2%, 46.9 % and 62.5 %).

The mean gain in R-SLSC contrast (for all Q-values con-
sidered) is 23.91 dB when compared to that of SLSC, which
corresponds to a mean gain of 43.18%. The mean gains
in R-SLSC SNR and CNR (when compared to SLSC SNR
and CNR) are 2.10 and 2.03, respectively, which correspond
to improvements of 65.30% and 63.16%. R-SLSC contrast,
CNR, and SNR generally outperform B-Mode imaging for
the majority of Q-values considered, as shown in the second
column of Fig. 5.

Qualitatively, for this phantom data, we observe that at the
lower lags, boundary delineation for R-SLSC is worse than
that of SLSC, likely because R-SLSC does not have sufficient
data to estimate a suitable subspace. However, this boundary
delineation is improved at higher lags when compared to
lower-lag R-SLSC images and when compared to comparable-
lag SLSC images. We additionally observe that at lower lags
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Simulation Data Phantom Data PICMUS Data In Vivo

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5: Comparison of B-mode, SLSC, and R-SLSC Contrast, CNR and SNR measurements and their variation with Q, as
measured in (a, e, i) simulated data with -10dB channel noise, (b , f, j) experimental phantom data acquired with focused
transmit beams, (c, g, k) experimental phantom data acquired with plane wave transmission, and (d, h, l) in vivo liver data. For
the in vivo liver data, the patchwise and columnwise results overlap the results obtained with R-SLSC applied to the whole
image in most cases. B-mode images were created with the entire receive aperture, and the Q values do not apply to the
B-mode results.

the poor boundary definition results in seemingly smaller cyst
sizes. This is related to the finite width of the ultrasound
beam and the lower lags containing only local information,
which is insufficient to produce a good boundary estimate.
However, at higher lags, the cyst size returns closer to its
original size because the algorithm incorporates the higher
resolution information that is contained within the higher
element separations. The tissue texture surrounding the cyst
also appears smoother at the higher-lag R-SLSC images when
compared to the higher-lag SLSC images.

D. Application to Plane Wave Imaging

B-mode, SLSC and R-SLSC images of the plane wave data
are displayed in Fig. 7. The rectangles in the DAS image (Fig.
7a) correspond to the target and background ROIs used to

evaluate contrast, SNR and CNR and they are maintained for
this phantom. Fig. 7b shows SLSC images corresponding to
Q-values of 7.8%, 15.6%, 23.4%, 31.2% and 39.0%, while
Fig. 7c shows corresponding R-SLSC images.

Based on the metrics shown in Fig. 5 for the PICMUS
data, R-SLSC has a mean contrast gain (averaged over all
Q-values considered) of 4.62 dB (12.28%) when compared to
SLSC, with gains in SNR and CNR of 2.37 (42.41%) and
2.14 (41.50%), respectively. Similar to the previous phantom
results achieved with focused transmits, R-SLSC imaging
outperforms B-Mode imaging for this PICMUS data obtained
with plane wave transmits, particularly at higher lags, as
evident in Figs. 5c, 5g, and 5k.

We were unable to obtain meaningful results when directly
implementing the contrast evaluation script provided by PIC-
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(a) B-Mode (b) SLSC

(c) R-SLSC

Q=7.8% Q=15.6% Q=31.2% Q=46.9% Q=62.5%

Fig. 6: (a) DAS B-mode image of an anechoic cyst in a CIRS 054GS experimental phantom. The white rectangles show the
ROIs used to calculate Contrast, SNR, CNR, and the correlation curves in Fig. 3b. (b) SLSC images corresponding to Q-values
of 7.8%, 15.6%, 31.2%, 46.9% and 62.5%, respectively. (c) Corresponding R-SLSC images created with the same Q-values.
All images are displayed with 60 dB dynamic range.

(a) B-Mode (b) SLSC

(c) R-SLSC

Q=7.8% Q=15.6% Q=31.2% Q=46.9% Q=62.5%

Fig. 7: (a) DAS B-mode image constructed from from the PICMUS[43] experimental data of an anechoic target in a CIRS
040GSE phantom. The white rectangles show the ROIs used to calculate Contrast, SNR, CNR, and the correlation curves in
Fig. 3c. (b) SLSC images corresponding to Q-values of 7.8%, 15.6%, 31.2%, 46.9% and 62.5%, respectively. (c) Corresponding
R-SLSC images created with the same Q-values. All images are displayed with 60 dB dynamic range.

MUS organizers because the zero-value pixels in R-SLSC
images returned −∞ values after applying the log operation
step provided in the script. We therefore made one change to
the evaluation script and measured performance prior to log
compression, resulting in a contrast of 7.90 dB for the DAS
B-Mode image and a mean contrast (averaged over all Q-
values considered) of 11.95 dB for the R-SLSC images, which
confirms our observations that R-SLSC imaging produces
better anechoic cyst contrast (4.05 dB greater) than B-mode
imaging.

We additionally note that the hyperechoic point target,
which is clearly observable in the DAS B-mode image, is
difficult to visualize in both the SLSC and R-SLSC images.
Generally, SLSC is known to perform poorly with point target
visualization [7] (except in the presence of noise[11]). We
see that this is also true for R-SLSC imaging with plane
wave transmissions. There are also a few coherence outliers
within the cyst that are not removed with R-SLSC imaging,
although the corresponding location of these outliers have
lower amplitudes and are less pronounced in the B-mode
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B-Mode SLSC M-Weighted SLSC Whole-Image R-SLSC Patchwise R-SLSC

(Q = 43.8%) (Q = 43.8%) (Q = 51.6% & λ = 0.6) (Q = 51.6% & λ = 0.6)

(a) (b) (c) (d) (e)

Fig. 8: In Vivo images of hypoechoic blood vessels in a healthy liver. (a) B-mode image, (b) traditional SLSC image created
with Q = 43.8%, (c) M-weighted SLSC image (without RPCA), (d) whole-image R-SLSC created with Q = 51.6% and
λ = 0.6, (e) Patchwise R-SLSC image created with Q = 51.6% and λ = 0.6. The dynamic range for each image was chosen
to best visualize the data (i.e, 60 dB for the B-mode image and 30 dB for the SLSC, M-weighted SLSC, and R-SLSC images).
Arrow #1 points to the ROI used to calculate contrast, CNR, and SNR, while arrow #2 points to a vessel that is noticeably
improved with SLSC, M-weighting, and R-SLSC.

image.

E. In Vivo Liver Data

B-mode, SLSC, and R-SLSC images of a hypoechoic vessel
target in an in vivo liver are shown in Figs. 8a, 8b, and 8d,
respectively. Although rectangles corresponding to the ROIs
used to evaluate contrast, SNR and CNR were omitted to
improve vessel visibility, they correspond to the largest vessel
at a the transmit focal depth of 35mm, located between lateral
positions 20 and 30mm (see arrow #1). We also note that
the top of these in vivo SLSC and R-SLSC images are dark
because they are outside of the focal zone.

The mean R-SLSC contrast loss (averaged over all Q-
values shown in the last column of Fig. 5) is 0.48 dB
when compared to that of SLSC, which corresponds to a
2% decrease. When we exclude the lower lags from this
comparison and only consider the higher lags ranging from
Q = 43.75% to Q = 78.12% (where we see the most
contrast improvement), we achieve a higher mean contrast
gain of 2.69dB (11.86%) for R-SLSC images compared to
SLSC images. The mean SNR and CNR gains (averaged over
all Q values) are 1.26 and 0.67, respectively, corresponding
to improvements of 71.62% and 45.26%. Similar to phantom
data, R-SLSC imaging outperforms B-Mode imaging for this
in vivo case, as shown in Figs. 5d, 5h, and 5l. The additional
lines seen in this last column of Fig. 5 are explained in Section
V-F.

Qualitatively, there are several additional aspects of these
R-SLSC in vivo images that are improved over SLSC and B-
mode images. For example, clutter obscures the appearance
of the vessel located from depth 20 mm to 30 mm in the

B-mode image (see arrow #2), but this vessel is more clearly
visualized in the SLSC and R-SLSC images. The tissue within
the transmit focal zone is additionally brighter overall in R-
SLSC images (when compared to SLSC images created with
similar lag values). Similar to the phantom and simulated data,
the tissue texture also appears to be smoother with R-SLSC
images. This smoothing of tissue texture helps with discerning
the hypoechoic vessels from their surroundings and reduces
the speckle-like texture of the images.

F. Parallelization

After calculating delays and computing a SLSC image,
the average additional computation time required to calculate
the robust principal components is 23 seconds per R-SLSC
image (using the computer described in Section IV-B). One
approach to reduce the R-SLSC image computation time is
to subdivide the RPCA computation for parallel processing
as illustrated in Fig. 1b. We successfully implemented this
alternative using the same number of columns as scanlines
(i.e., 128 columns) for the columnwise implementation and
using 64 pixel x 64 pixel patches (i.e. 88 patches total each
of size 19.2mm (lateral)× 1.23mm (axial)) for the patchwise
implementation, thereby reducing our RPCA computation
times to 9s each. For comparison, Fig. 9 shows the calculation
times for these various R-SLSC implementations alongside
the calculation times for SLSC correlation calculations and B-
mode imaging obtained with the computer described in Section
IV-B.

A patchwise R-SLSC image of the in vivo liver is shown
in Fig. 8e. When comparing the process for creating this
image with that of the corresponding R-SLSC image obtained
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Fig. 9: Calculation times to obtain B-mode and SLSC images
with the computer described in Section IV-B, compared to
calculation times for the RPCA step required to obtain R-
SLSC images with and without patchwise and columnwise
parallelization. The calculation time for R-SLSC is reduced
by a factor of 2.6 with parallelization.

without parallelization (Fig. 8d), we note that this patchwise
image excludes the black region at the top of the image
when imaging the vessels closer to the image focus. This
exclusion results in slightly less clutter inside vessel # 1
which is close to the focus, although the performance metrics
in Fig. 5 are not affected. In addition, the patchwise image
slightly reduces the overall image brightness (when compared
to the R-SLSC image without parallelization) because this
image is based on the local estimates within each patch.
Otherwise, the reduction in computation times achieved with
parallelization has minimal impact on image quality. This
observation is particularly true at the higher lags, which can
be confirmed quantitatively by noting that the two additional
lines in Figs. 5d, 5h, and 5l (representing the columnwise and
patchwise implementations) overlap the whole-image R-SLSC
implementation at the higher lags.

G. Effect of the λ Parameter and M-Weighting

As speckle SNR is an important characteristic of ultrasound
images, the Q−values of the in vivo R-SLSC images in
Fig. 8 were chosen to closely match the speckle SNR of
DAS images. Our specific selections are represented by the
open circles in Fig. 10a, which shows the results of our
investigations to determine the optimal λ parameter for R-
SLSC imaging. While the SLSC images possess high SNR (in
most cases higher than B-mode), we find that we can control
the SNR more directly in R-SLSC imaging by adjusting the
λ parameter.

Fig. 10 shows contrast, CNR, and SNR for B-mode, tradi-
tional SLSC, and R-SLSC with λ equal to 1.0, 0.8, 0.6 and
0.4. We observe from Fig. 10 that decreasing the λ parameter
results in applying less penalty to labeling pixels as outliers,

and as a result more coherence values are labeled as outliers
to be discarded (which effectively increases the SNR). These
changes in SNR generally have minimal impact on image
contrast, except when λ=0.4 (see Fig. 10b).

When comparing R-SLSC (λ = 1) to SLSC images cre-
ated with the linear M-weighting described in Section III-A
(applied without RPCA), we observe that the majority of
the improvements obtained with R-SLSC are primarily due
to this weighting step. For example, an M-weighted SLSC
image without the application of RPCA is shown in Fig.
8c, and it looks strikingly similar to the R-SLSC image
achieved with the same Q−value (43.8%) and λ = 1, which
is confirmed quantitatively in Fig. 10b, as M-weighted SLSC
images obtained with different Q-values have similar contrast
to R-SLSC (λ = 1) images. The SNR and CNR of these two
image types are also similar at higher lag values (Figs. 10a
and 10c). This observation is true not only for the in vivo
data, but also for the phantom and simulated data (although
images are not shown without RPCA applied for these data).
Thus, M-weighting is a major step towards improving SLSC
image quality and incorporating the information from higher
lags.

Despite this similarity between M-weighted SLSC images
and R-SLSC images achieved with λ = 1 (and the significantly
reduced processing time required for M-weighted SLSC com-
pared to R-SLSC imaging), R-SLSC imaging can potentially
be considered more advantageous because we can use RPCA
to incorporate up to 8% more lags (i.e. 43.8% vs. 51.6%, which
corresponds to 10 additional element separations for a 128-
element aperture) and achieve similar SNR to B-mode images
by decreasing the λ parameter, as shown quantitatively in Fig.
10 with an example image displayed in Fig. 8d. Although
the number of coherence outliers are greater at higher lags, it
appears that more of them are rejected with lower values of λ.
This data-dependent adjustment of the λ parameter effectively
allows us to utilize more lags, achieve similar speckle SNR to
B-mode images, and obtain greater improvements in contrast
and CNR when compared to traditional SLSC images achieved
with the same Q-values.

VI. DISCUSSION

There are four key contributions of this paper. First, we
applied both linear M-weighting and RPCA to the traditional
SLSC imaging method in order to incorporate previously
discarded information from higher lags. With M-weighting, it
appears that the short lags provide more structural information
(i.e., general cyst location) while the longer lags provide more
boundary information, and both contributions work together to
improve image quality for anechoic and hypoechoic targets
after incorporating more lags with more weight applied to
the short lag region. Additional weighting schemes could be
applied in the future to explore the optimal weights for a
range of imaging targets and anatomical structures. R-SLSC
could be considered as a more advanced weighting scheme
that improves image quality by both rejecting coherence
outliers and taking advantage of the demonstrated benefits
of M-weighting. Our second contribution highlights the data-
dependent performance of R-SLSC, which can be tuned to
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(a) (b) (c)

Fig. 10: (a) SNR, (b) Contrast, and (c) CNR of in vivo B-mode, SLSC, M-weighted SLSC, and R-SLSC images. The R-SLSC
image metrics are calculated with λ = 1.0, 0.8, 0.6 and 0.4. Note that R-SLSC images can be tuned to provide similar tissue
SNR to B-mode images by adjusting the λ parameter, an option that is not possible with SLSC imaging. The black circles
correspond to the lags displayed in Fig. 8(b), Fig. 8(c) and Fig. 8(d). B-mode images were created with the entire receive
aperture, and the Q values do not apply to the B-mode results.

provide similar tissue SNR to B-mode images by adjusting
the λ parameter. Third, we showed that the processing times
for R-SLSC can be reduced by subdividing the image data.
Finally, we demonstrated that R-SLSC imaging outperforms
traditional SLSC imaging (defined as improved SNR, CNR,
and contrast of anechoic or hypoechoic regions) at higher lags
when applied to data acquired with both focused and plane
wave transmissions.

When anechoic and hypoechoic targets are barely dis-
cernible in B-mode images due to low contrast and clutter, we
expect SLSC and R-SLSC to clearly distinguish these targets
from their surroundings, particularly in high-noise environ-
ments as represented by the simulation results in Fig. 4 and
the in vivo results in Fig. 8. R-SLSC experiences additional
improvements over SLSC as lag increases in all example cases
shown in this paper (simulation, phantom, and in vivo), as
demonstrated in Fig. 5. This improvement at higher lags is
caused by a combination of applying both linear M-weighting
and the RPCA algorithm, which develops a better subspace
estimate as the amount of data available to the algorithm
increases. Therefore, rejection of the noise and outliers is more
prevalent at the higher lags, leading to an image with smoother
tissue texture. This smoothing of tissue texture helps to discern
anechoic and hypoechoic structures from their surroundings
and reduces the speckle-like texture of the images, which is
generally beneficial for boundary detection (e.g., similar to
spatial compounding[44][45]), but could potentially limit the
diagnostic information typically provided by the presence of
speckle. We can potentially recover some of this diagnostic
value by adjusting the λ parameter, which we envision being
controlled by an additional knob on an ultrasound scanner,
similar to existing options like focal depth or time gain
compensation that are currently used to enhance ultrasound
image quality. These results imply that both R-SLSC and M-
weighting will perform well in high-noise clinical scenarios
where anechoic or hypoechoic target visualization is critical.
Possible clinical applications include breast cyst visualization

[40], liver vessel tracking [41], and obese patient imaging.
One common characteristic between SLSC and R-SLSC

images is heightened sensitivity to structural boundaries. For
example, when low-amplitude signals are surrounded by hy-
perechoic structures with high-amplitude signals and high
spatial coherence, the coherence of the lower amplitude signal
is reduced relative to that of the higher amplitude signal. While
this characteristic is a major strength when detecting cyst-like
structures, it is also a limitation when imaging hyperechoic
boundaries next to tissue structures. This observation was
evident in in vivo cardiac images[9], and it is present at the
distal liver boundary in Fig. 8, where this boundary appears
to be separated from the rest of the liver tissue in SLSC and
R-SLSC images.

While the processing times for R-SLSC could be consid-
ered as an additional limitation of R-SLSC imaging, Fig. 9
demonstrates that it is feasible to subdivide the RPCA step
to implement parallel processing for real-time imaging. This
alteration provides sufficient information to locally estimate
a suitable subspace while rejecting appropriate coherence
outliers.

When comparing the SLSC contrast curves for simulated
and experimental data in Fig. 5 to the corresponding coherence
curves inside the cyst (Fig. 3), the shapes of these curves are
similar as a function of Q. While changes in the contrast
of SLSC images seems to be correlated with changes in
the corresponding coherence curves as a function of Q, the
contrast of the R-SLSC images is more stable at higher lags
as a result of robustness to coherence outliers. This observation
further supports the implementation of R-SLSC imaging.

VII. CONCLUSION

This work is the first to re-examine the lag summation
step of the SLSC algorithm and achieve additional robustness
to coherence outliers through both weighted summation of
individual coherence images (i.e., M-weighting) and the appli-
cation of RPCA. The original SLSC imaging algorithm does
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not consider the content of the images formed at different lags
before summing them, and thus does not exploit tissue texture
differences in SLSC images created with various short lag
values. In addition, the traditional SLSC beamforming method
is somewhat restricted to short lag values when considering the
widely varying coherence values present at the longer lags.
Our methods improve the original SLSC imaging method by
incorporating a linearly decaying weighting scheme to achieve
M-weighted SLSC images. RPCA is additionally utilized to
search for a low dimensional subspace to the coherence im-
ages at different lags. The RPCA projections and consequent
denoising of the individual images on this low dimensional
subspace are then used to achieve R-SLSC images. Both M-
weighted SLSC and R-SLSC imaging enable the use of higher
lag information, offer increased contrast, SNR and CNR, and
are generally more robust to noise (defined as coherence
outliers) when compared to traditional SLSC imaging.
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