
The UltraSound ToolBox

Alfonso Rodriguez-Molares1,2,∗, Ole Marius Hoel Rindal2,†, Olivier Bernard‡,
Arun Nair§, Muyinatu A. Lediju Bell§, Hervé Liebgott‡, Andreas Austeng†, and Lasse Løvstakken∗

∗Department of Circulation
and Medical Imaging

NTNU, Trondheim, Norway

†Department of Informatics
University of Oslo

Oslo, Norway

‡Creatis, INSA
University of Lyon

Lyon, France

§PULSE Lab
Johns Hopkins University
Baltimore, United States

Abstract—We present the UltraSound ToolBox (USTB), a pro-
cessing framework for ultrasound signals. USTB aims to facilitate
the comparison of imaging techniques and the dissemination of
research results. It fills the void of tools for algorithm sharing
and verification, and enables a solid assessment of the correctness
and relevance of new approaches. It also aims to boost research
productivity by cutting down implementation time and code
maintenance.

USTB is a MATLAB toolbox for processing 2D and 3D ultra-
sound data, supporting both MATLAB and C++ implementations.
Channel data from any origin, simulated and experimental, and
using any kind of sequence, e.g. synthetic transmit aperture
imaging (STAI) or coherent plane-wave compounding (CPWC),
can be processed with USTB.

Here we describe some of the elements of USTB such as: the
ultrasound file format, the concept of the general beamformer,
and the signal processing pipeline. We also show a minimal
code example, and demonstrate that USTB can be used with
the most used transmit sequences: STAI, CPWC, diverging wave
imaging (DWI), focused imaging (FI), and retrospective transmit
beamforming (RTB).

Keywords—Beamforming, signal processing, comparison, tool-
box

I. INTRODUCTION

Urged by the motto “publish or perish”, the Academia faces
a challenge of biblical proportions: the universal research-
paper flood.

There are two factors that will unleash Armageddon in
the ultrasound community. First is our inability to keep track
of all the publications relevant to our work. This is due
mainly to time constrains, but also because of the increasing
specialization required to implement modern methods.

Second is the overloading of the peer-reviewing system.
With an ever increasing number of submissions, few review-
ers have the luxury of implementing themselves the method
described in the manuscript. This makes it very difficult - if
not impossible - to assess the correctness and relevance of
the proposed method. It reduces the assessment of the method
to the observation of some results, often 2D images, that the
authors compare to some reference algorithm, often delay-and-
sum (DAS).

In this way the question of whether the method is correct
and relevant becomes a matter of opinion; a learned opinion
perhaps, but an opinion nonetheless.

1email:alfonso.r.molares@ntnu.no
2These authors have contributed equally to this work.

We ask the reviewers to assess the performance of a nearly
black-box by mere observation of a few of its outputs, a request
that should set all our scientific alarms off. Not surprisingly,
the attention scholars devote to new research is dropping [1]
while the proportion of scientific fraud has increased tenfold
since 1975 [2]. In 2012, a study published in Nature [3] found
that 47 out of 53 medical research papers on cancer research
were irreproducible.

As the scientific community becomes aware of this trend
reaction starts to take shape. Initiatives such as open research
[4], [5], and reproducible research [6], [7] try to fight this.
Using modern tools they aim to reconnect the peer-review
system to the spirit that got academic journals started in the
XVII century.

In the ultrasound community, a recent attempt to address
this issue was made with the PICMUS challenge [8] (Tours,
IUS 2016). Some researchers have started to take interest in the
comparison of beamforming methods [9], and there seems to
be a clear consensus on the need for tools and data to support
the verification of all kind of signal processing algorithms.

II. THESIS

We believe this problem can be solved by developing a
common set of tools, including:

1) an ultrasound file format, and
2) a framework for ultrasound signal processing.

A common ultrasound file format makes it possible to share
processed and unprocessed datasets. Making those datasets
publicly available facilitates the definition of a set of standard
test cases for verification purposes. Inserting the same input
dataset to different algorithms makes for a perfect scenario
for comparison. Using a known data format allows for further
inspection of the output of a method.

However, the file format alone does not allow a reviewer
to check whether a method is correct or relevant for a given
application. To address that problem a framework has to be
defined so that also the algorithm can be shared. This way
reviewers, and other researchers, can test the algorithm on their
own terms, inserting new datasets, designing new tests.

Four institutions (Norwegian University of Science and
Technology, University of Oslo, University of Lyon, and Johns
Hopkins University) have come together to start the develop-
ment of such a framework: the UltraSound ToolBox (USTB).

The USTB is a free MATLAB toolbox for processing
ultrasonic signals, and comes with its own ultrasound file



uff

uff.point

uff.probe

uff.linear array

uff.curvilinear array

uff.matrix array

uff.scan
uff.linear scan

uff.sector scan

uff.apodization

uff.wave

uff.channel data

uff.beamformed data

Fig. 1: USTB’s UFF class organization.

format (UFF). USTB aims to cover all processing techniques
from tissue and flow visualization to other image processing
techniques. More information about the USTB initiative can
be found at the website https://www.ustb.no. Access to the
repository https://bitbucket.org/ustb/ustb is granted for anyone
interested in development or testing.

III. METHODS

In what follows we review part of the USTB structure and
we disclose some of the elements in USTB.

A. The Ultrasound File Format

UFF data structure originates from the data class organi-
zation in USTB. A UFF class family (shown in Fig. 1) is
defined, composed of a uff class and seven children classes.
To minimize memory use uff is defined as a handle class.

All UFF classes can be dumped into HDF5 files (Hierarchi-
cal Data Format v5). HDF5 is an open file format to manage
extremely large and complex data collections [10]. Originally
developed by the National Center for Supercomputing Ap-
plications it is now maintained by the HDF Group. Several
software platforms support HDF5 such as Java, MATLAB,
Python, Octave, Mathematica, etc.

For clarity, we refer to the files dumped by USTB as UFF
files (instead of HDF5) and we use the extension .uff.

B. Children and grandchildren classes

We follow the policy that general, unconstrained classes
must be defined as children classes, while specific, constrained
objects are defined as grandchildren classes. For instance we
can define an arbitrary probe with uff.probe by specifying
the position of each element; but with uff.linear_array we
can directly define a linear array just by specifying the pitch
and number of elements.

Processing is greatly simplified by making all processes
take only children classes as input, rather than all possible
grandchildren classes. The only requirement is then that every
grandchild class must know how to define itself as its parent
class.

C. The general beamformer

Both UFF and USTB revolve around the concept of the
general beamformer. The wavefronts in most ultrasound se-
quences can be fully defined using a single point source P : in
focused imaging (FI) and retrospective transmit beamforming
(RTB) P is on the transmit focal point in front of the probe, in
diverging wave imaging (DWI) P is at the wave origin behind
the probe, in synthetic transmit aperture imaging (STAI) P lies
on the active element, in coherent plane-wave compounding
(CPWC) P is at an infinite distance but in a given direction.
Using point sources to define all those waves it is possible to
beamform all sequences with a single algorithm.

This is important to reduce the number of beamforming
codes in the framework, facilitate intercomparison, and reduce
code maintenance.

D. Time zero convention

It is necessary, however, to set an unequivocal convention
for what is defined as time zero. This is often defined as the
moment the first element in the array is fired. While this is
perfectly correct, in USTB we favor a convention that does
not depend on the probe geometry. USTB assumes that time
zero corresponds to the moment the transmitted wave passes
through the origin of coordinates (0, 0, 0).

E. Data dimensions

The data in a uff.channel_data structure have four di-
mensions: [time, channel, event, frame].

The first two dimensions run along the time sample and the
channel number. The third is the event dimension whose length
will often be equal to the number of waves in the sequence.
The fourth dimension is the frame number.

There are two situations where the number of waves in the
sequence will differ from the number of events. One is in case
of multi-line transmissions (MLT), i.e. when more than one
wave is transmitted in a single transmit/receive event. In such
case there will be more waves in the sequence than events in
uff.channel_data. Those are addressed with an event index
in the uff.wave structure that indicates which event holds the
data of a certain wave.

The other case is in packet acquisitions, i.e. when the same
wave is transmitted in consecutive events. In this case there
are more events than waves in the sequence. These events are
addressed by specifying the event indexes in uff.wave as an
array of integers.

The data in a uff.beamformed_data structure have also
four dimensions: [pixel, channel, event, frame]

The first dimension of the data runs along the pixels in the
spatial map. The third dimension separates the contribution of
each wave to image formation, a contribution which is also
referred to as “low resolution image” in the context of STAI
or CPWC. The second dimension separates the contribution of
each channel to image formation, equivalently to the contri-
bution of each transmitted wave. The fourth dimension is the
frame number.

While the number of dimensions remains constant along
the processing pipeline (always four), the number of elements

https://www.ustb.no
https://bitbucket.org/ustb/ustb


Fig. 2: Example of two processing pipelines.

in any dimensions could vary throughout the processing chain.
For instance: after compounding the wave and channel dimen-
sions can become singleton, the number of frames may change
after clutter filtering.

F. The signal processing pipeline

An interesting approach to the development of a data
processing framework is to set a processing pipeline that
allows inserting an arbitrary number of processors (filters
or gadgets) in a more or less arbitrary order. Such strategy
has been successfully implemented in other disciplines of
medical imaging [11]. Maximum flexibility is achieved when
the processors are “atomic”, i.e. as small as possible, so that
complex processes can be built by combination of them. This
strategy boost productivity by increasing code reutilization and
reducing maintenance.

In USTB we define a set of processors that we divide into
three types: preprocessors, midprocessors, and postprocessors.
A preprocessors takes a uff.channel_data class and delivers
another uff.channel_data class. A midprocessor takes a
uff.channel_data and delivers a uff.beamformed_data. A
postprocessor both takes and delivers uff.beamformed_data

classes. A pipeline is built by connecting the outputs and
inputs of a set of processors such as it is shown in Fig. 2.
Additional data can be fed into the pipeline as parameters of
every processor class. Processors can be implemented both in
MATLAB or C++.

Note that the end result of the pipeline does not have
to be a B-mode image. Other physical properties, different
from scattering intensity, can be estimated through the pipeline
and stored in a uff.beamformed_data structure: Doppler shift,
blood flow, sound speed, elasticity, attenuation, etc.

Several processors are available in USTB implementing
adaptive beamforming techniques, such as the coherence
factor, phase coherence factor, generalized coherence fac-
tor, delay-multiply-and-sum, and short-lag spatial coherence.
USTB also features a large set of example scripts including
data import from the Verasonics and Alpinion platforms,
interaction with the Field II[12] program, as well as examples
of acoustic radiation force imaging, multi-line acquisition, etc.
Several UFF datasets are available on the USTB website.

(a) FI (b) STAI

(c) CPWC (d) DWI

(e) RTB

Fig. 3: PSF of the five tested beamforming methods (FI,
STAI, CPWC, DWI, and RTB) generated with USTB’s general
beamformer.

IV. RESULTS AND CONCLUSIONS

To demonstrate the flexibility of USTB, five datasets (FI,
STAI, CPWC, DWI, and RTB) have been simulated with
USTB’s built-in simulator and reconstructed with the general
beamformer approach. It is well known that CPWC becomes
equivalent to optimal FI (or STAI) under certain circumstances.
Here we use USTB to show that the same result can be
extrapolated to DWI and RTB, if the transmit apodization
is transformed according to [13]. The equivalence is demon-
strated in terms of the full width half maximum (FWHM) and
side lobe level (SLL).

Fig. 3 shows the point spread function (PSF) of the
tested imaging sequences showing very similar images. Table I
displays the quality indexes FWHM and SLL.

We observe a bimodal distribution: nearly identical



TABLE I: Quality indexes for the five tested methods.

Method FWHM [µm] SLL [dB]

STAI 357.42 -28.92
FI 360.05 -29.02

CPWC 375.73 -27.35
DWI 376.27 -27.31
RTB 375.52 -27.39

mean 369.00 -28.00
std 9.42 0.89

values for STAI and FI (relative standard deviation of
σFWHM=0.52% and σSLL=0.24%), and for CPWC, DWI, and
RTB (σFWHM=0.10% and σSLL=0.15%). This is due to the two-
step combination of waves that occurs in the latter methods.
Between the two distributions we observe a relative error
of eFWHM= 4.66% and eSLL=5.75% that can be considered a
negligible drop in image quality.

The code used to perform this comparison is available
at http://www.ustb.no/code/IUS2017 abstract.m. No data is
needed to run the code, but the USTB must be available in
MATLAB’s path.

Listing 1: USTB minimal code example
% download UFF file
tools.download(’PICMUS_carotid_long.uff’, ’http://

ustb.no/datasets/’, [ustb_path(),’/data/’]);

% read channel data from UFF
channel_data=uff.read_object([local_path filename],’

/channel_data’);

% define scan
scan=uff.linear_scan();
scan.x_axis=linspace(-19e-3,19e-3,256).’;
scan.z_axis=linspace(5e-3,30e-3,256).’;

% initialize pipeline
bmf=beamformer();
bmf.channel_data=channel_data;
bmf.scan=scan;

% set up tx/rx apodization
bmf.receive_apodization.window=uff.window.tukey50;
bmf.receive_apodization.f_number=1.2;
bmf.receive_apodization.origo=uff.point(’xyz’,[0, 0,

-Inf]);
bmf.transmit_apodization=bmf.receive_apodization;

% launch pipeline: DAS + coherent compounding
b_data=bmf.go({process.das_mex process.

coherent_compounding});

% display image
b_data.plot();

Listing 1 show a minimal code example for USTB. The
code downloads a CPWC dataset from the PICMUS challenge
[8], beamforms it, and displays it. It gives a quick overview
of the kind of code handling that can be achieved with USTB.
The resulting image is shown in Fig. 4.

The UltraSound Toolbox (USTB) aims to facilitate the
comparison of imaging techniques and the dissemination of
research results. But it may also become a formidable research
booster. Imagine how much faster would it be to test new ideas

Fig. 4: PICMUS challenge dataset beamformed with the min-
imal code example in Listing 1.

if we had a plug-and-play implementation of all the methods
in the state-of-the-art. Consider how much time could be saved
in fruitless recoding and invested in taking the field forward.

REFERENCES

[1] P. D. B. Parolo, R. K. Pan, R. Ghosh, B. A. Huberman, K. Kaski,
and S. Fortunato, “Attention decay in science,” Journal of Informetrics,
vol. 9, no. 4, pp. 734 – 745, 2015.

[2] F. C. Fang, R. G. Steen, and A. Casadevall, “Misconduct accounts for
the majority of retracted scientific publications,” PNAS, vol. 109, no. 42,
pp. 17 028 – 17 033, 2012, http://dx.doi.org/10.1073/pnas.1212247109.

[3] C. G. Begley and L. M. Ellis, “Drug development: Raise standards for
preclinical cancer research,” Nature, vol. 483, no. 7391, pp. 531–533,
2012, 10.1038/483531a.

[4] M. Nielsen, Reinventing Discovery, 3rd ed. Princeton University Press,
2011.

[5] M. Woelfle, P. Olliaro, and M. H. Todd, “Open science is a re-
search accelerator,” Nat Chem, vol. 3, no. 10, pp. 745–748, 2011,
10.1038/nchem.1149.

[6] J. M. Wicherts and M. Bakker, “Publish (your data) or (let the data)
perish! why not publish your data too?” Intelligence, vol. 40, no. 2, pp.
73 – 76, 2012.

[7] C. G. Begley, “Reproducibility: Six red flags for suspect work,” Nature,
vol. 497, no. 7450, pp. 433 – 434, 2013.

[8] H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J. A. Jensen, and
O. Bernard, “Plane-wave imaging challenge in medical ultrasound,” in
2016 IEEE International Ultrasonics Symposium (IUS), Sept 2016, pp.
1–4.

[9] O. M. H. Rindal, A. Austeng, H. Torp, S. Holm, and A. Rodriguez-
Molares, “The dynamic range of adaptive beamformers,” in 2016 IEEE
International Ultrasonics Symposium (IUS), Sept 2016, pp. 1–4.

[10] “What is hdf5?” https://support.hdfgroup.org/HDF5/whatishdf5.html,
accessed: 2017-08-11.

[11] M. S. Hansen and T. S. Sørensen, “Gadgetron: An open source
framework for medical image reconstruction,” Magnetic Resonance in
Medicine, vol. 69, no. 6, pp. 1768–1776, 2013.

[12] J. Jensen and N. B. Svendsen, “Calculation of pressure fields from
arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 39, pp. 262–267, 1992.

[13] A. Rodriguez-Molares, H. Torp, B. Denarie, and L. Løvstakken, “The
angular apodization in coherent plane-wave compounding [correspon-
dence],” IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency Control, vol. 62, no. 11, pp. 2018–2023, November 2015.

http://www.ustb.no/code/IUS2017_abstract.m
https://support.hdfgroup.org/HDF5/whatishdf5.html

	Introduction
	Thesis
	Methods
	The Ultrasound File Format
	Children and grandchildren classes
	The general beamformer
	Time zero convention
	Data dimensions
	The signal processing pipeline

	Results and Conclusions
	References

