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Abstract—Poor quality ultrasound images and inadequate or
suboptimal visualization of imaging targets is a common problem
in individuals that are overweight or obese. Acoustic reverber-
ation is an incoherent noise source that is a common factor in
overweight and obese individuals and is a significant contributor
to the poor image quality. Specifically, diffuse acoustic rever-
beration is problematic because it appears similar to common
tissue texture in ultrasound images, thereby exacerbating the
inadequate and suboptimal visualization.

We describe the coherence imaging technique called the short-
lag spatial coherence (SLSC) beamformer and its related imaging
methods as potential solutions to the inadequate and suboptimal
visualization problem. The SLSC beamformer detects the spatial
similarity of the backscattered ultrasound waves, with a greater
emphasis on the spatial similarity at closely-spaced positions.
Because diffuse reverberation is spatially incoherent in the
wavefield, noise can be differentiated from tissue and other
desired imaging targets.

Applications of the SLSC beamformer to in vivo imaging
and adaptations of the technique to other imaging modalities,
including flow imaging, molecular ultrasound imaging, and
photoacoustic imaging are reviewed. Although computationally
more intensive than conventional delay-and-sum beamforming,
we describe several techniques for fast computation of coherence,
which enable real-time imaging. The challenges and criticisms of
spatial coherence beamforming are reviewed, including the loss in
phase information and the nonlinear behavior of the technique.

I. INTRODUCTION

Inadequate visualization of human anatomy and function

with medical imaging is a rising challenge. Often, inadequate

visualization is linked with overweightedness and obesity, or

“body habitus” [1–7]. While the rates of overweightedness

have roughly remained constant over the last several decades

[8], the rates of obesity have risen dramatically [9–11]. In

the United States, it is estimated that 34.2% of U.S. adults

are overweight (BMI 25.0–29.9) and 35.1% are obese (BMI

≥30.0) [8]. Within the European Union, approximately 34.8%

of the adult population were overweight and 15.4% were obese

[12].

In a retrospective analysis examining the effect of obesity

on image quality over all imaging modalities, Uppot et al.

[1] found a very strong correlation between patient weight

(or “habitus-limited”) and poor image quality, with abdominal

ultrasound showing the highest rate of habitus-limited studies

[1]. Similarly, a study by Finkelhor et al. [13] found that

49.7% of individuals requiring outpatient echocardiography

were obese, and of these individuals, obese patients had image

quality ratings of poor in 14% of cases, compared to 3.9% of

cases for normal weight patients.

Factors contributing to poor ultrasound image quality in-

clude the inability to obtain a good acoustic window, high at-

tenuation of fatty or scar tissue, thickness of the subcutaneous

fat layers, inhomogeneities in attenuation, variations in the

speed of sound of tissue, reverberation, and off-axis scattering.

Although many of these factors are present in overweight and

obese patients, the can be present in normal-sized patients

can as well. Patients exhibiting these characteristics are often

called the “difficult-to-image patient.”

Given the significant and increasing number of poor quality

ultrasound exams due to difficult-to-image patients, there is a

need for better ultrasonic imaging methods to combat poor

image quality. Early image quality improvement methods

focused on eliminating aberration of the ultrasonic wavefronts

[14–16]. However, in vivo improvements in image quality with

phase aberration correction techniques have been limited [17–

19] and real-time efforts have proved difficult due to the need

for multi-dimensional arrays and the lack of sufficient frame

rate with phase correction algorithms [17, 19–21].

In a simulation study examining phase aberration and

acoustic reverberation, two sources of noise in ultrasound

imaging, Pinton et al. [22] found that image clutter due to

acoustic reverberation introduced image quality degradation

as strong as phase aberration. Like phase aberration, there are

a few clinical practices able to mitigate the impact of acoustic

reverberation. Typically, compression of the skin and fat layers

with the transducer and tissue harmonic imaging are applied

to obtain a good acoustic window and decrease the thickness

of the fat layers, thereby minimizing reverberation between

connective tissue and fat [23]. This method sometimes yields

satisfactory results with overweight and obese individuals,

however the force and positioning required over the course

of an exam often results in ergonomic difficulties and injuries

for sonographers [24]. Tissue harmonic imaging is a technique

that is known to reduce acoustic clutter [25, 26]. Many studies

report anecdotal evidence of harmonic imaging providing more



useful information in obese patients [27–30]. However, in the

study by Pinton et al., it was shown that tissue harmonic

images did not fully eliminate acoustic clutter [22].

A variety of recent approaches to reduce clutter from acous-

tic reverberation have been proposed, including SURF imaging

[31, 32], PCA filtering [33, 34], aperture domain modeling

and regularization (the ADMIRE algorithm) [35], and spatial

prediction filtering [36]. In addition, techniques based on the

quantification of the coherence of ultrasound backscatter were

utilized to improve image quality. Initially, these “coherence

factors” were proposed to describe the focusing characteristics

of an imaging system with respect to phase aberration [37–39].

Li and Li [40] utilized a modified form of the coherence factor,

called the generalized coherence factor (GCF), to weight B-

mode images in order to reduce clutter from phase aberrations.

A similar pair of coherence metrics, called the phase coherence

factor (PCF) and the sign coherence factor (SCF) [41] were

proposed to reduce clutter originating from beam sidelobes

(which are often elevated due to aberration), and operated as

a weight to the B-mode image, much like the GCF.

Clutter due to acoustic reverberation, however, imparts

different coherence characteristics than phase aberration [42,

43]. The coherence characteristics of ultrasonic backscatter

and acoustic reverberation can be exploited to differentiate

tissue signal from noise. In the following, we review the

coherence beamforming technique called the short-lag spatial

coherence (SLSC) beamformer [44] and its related imaging

methods as potential solutions to the inadequate and subopti-

mal visualization problem. We examine the techniques in their

application to difficult-to-image patients and difficult-to-image

scenarios. We also review the limitations and challenges of

utilizing this technique.

II. SPATIAL COHERENCE

Coherence is a general term used to describe the similarity

between two functions or signals. In the context here, we wish

to describe the spatial similarity of a specific random process;

that is, a reflected ultrasound wave that has propagated from

its reflection point to the transducer and has been spatially

sampled by a transducer array. Spatial coherence in this

context refers to the similarity of the wave that has been

sampled by the array at two different points (or elements),

accounting for time-delay differences that may exist due to

path-length differences. Spatial coherence of backscattered

ultrasound waves can be measured or described using various

metrics including covariance, correlation, and sum of absolute

differences, among others [45–49]. In fact, the spatial covari-

ance of the backscattered ultrasound wave can be described

theoretically by an adapted form of the van Cittert-Zernike

theorem [45].

The spatial covariance over time period T0 between two

discretely sampled ultrasound signals (i.e. channel or element

signals), sx1
(n) and sx2

(n), is given by

C(x1, x2) =

t+T0/2
∫

t−T0/2

sx1
(t)sx2

(t) dt. (1)

The ultrasound signals, sx1
(n) and sx2

(n), can be described

as a wide-sense stationary random process, meaning that the

spatial covariance in Eq. 1 is a function of spatial lag ∆x =
x2 − x1. In the case of transducer elements, the spatial lag

can be normalized by the transducer pitch so that it is in the

form of an integer number of elements, m. In the discretely

sampled case, the spatial covariance at time sample n is

C(n,m) =

n+K/2
∑

k=n−K/2

si(k)si+m(k). (2)

where K is an integer number of samples that defines the

kernel size over which the spatial covariance is computed.

Fig. 1 shows the normalized spatial covariance measured

from several imaging targets including a point target, diffuse

scatterers in a tissue-mimicking phantom, in vivo liver tissue,

and the lumen region of in vivo bladder. The point target is

known as a “coherent” target, because the wavefront has high

spatial covariance at all lags. Because there are no echoes

in the lumen of the bladder, the received signals from this

target are a result of spatially “incoherent noise,” meaning that

the received signals or echoes have no spatial relationship.

Incoherent noise sources include acoustic reverberation and

noise from the ultrasound system’s electronics. In the case

of diffuse scatterers, the van Cittert-Zernike theorem predicts

that the normalized spatial covariance from such randomly-

positioned sub-wavelength scatterers imaged by a transducer

array with uniform apodization is a linearly decreasing func-

tion of lag from 1 at a lag of 0 to 0 at a lag equal to N -

1, where N is the number of transmitting elements in the

transducer array. Although the backscatter from liver tissue

is mainly a result of scattering from diffuse scatterers, Fig. 1

shows that the measured coherence deviates from the linear

function predicted by the van Cittert-Zernike theorem. In this

case, there is an immediate drop in the spatial covariance at the

lags near 0 and a somewhat linear decrease in covariance from

there. Pinton et al. [43] showed that this particular shape of the

spatial covariance function is the result of the spatial coherence

of incoherent noise superimposed on the spatial coherence of

diffuse scatterers.

III. SLSC BEAMFORMING

A. Formulation

The output of a delay-and-sum beamformer from the signals

in Fig. 1, with the exception of the point target, is a speckle

pattern. In the case of incoherent noise from electronics, which

is introduced after transduction of the acoustic waves, the

speckle pattern is much finer and is easier to distinguish

from tissue, particularly since it changes from frame-to-frame.

However, in the case of incoherent noise from acoustic re-

verberation, the noise is bandlimited by the bandwidth of
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Fig. 1. The normalized spatial covariance of several imaging targets as a
function of element spacing m. For a point target, the wavefront is completely
coherent, while the signals from the bladder cavity echoes are completely
incoherent. For diffuse scatterers, the spatial coherence decreases linearly from
1 to 0 over a length equal to the size of the transmit aperture. In the case of
in vivo tissue, the spatial covariance deviates from the ideal diffuse scatterers
due to the presence of incoherent noise. The resulting spatial covariance of
tissue is a superposition of the spatial covariance of diffuse scatterers and
incoherent noise.

the transducer and therefore produces a speckle pattern very

similar to that of tissue [23]. The acoustic reverberation in

this case can be called diffuse reverberation, in order to

distinguish it from the well-known “coherent” reverberations

that occurs from the specular reflections from highly-reflecting

tissue boundaries (e.g. carotid wall). The diffuse reverberation

can create a false impression of tissue being present where it

may not exist [23], particularly because it is temporally stable.

An example of acoustic noise presenting similar texture to

tissue is shown in the B-mode image (top) in Fig. 2.

The short-lag spatial coherence (SLSC) beamformer ex-

ploits the differences in the spatial coherence to create images

that suppress diffuse reverberation clutter and electronic noise.

In Fig. 1, the difference in spatial coherence between pure

acoustic noise and tissue is relatively small at the larger lags.

However, in the region of shorter lags (e.g. 1–18), there are

large differences between the received waveforms from tissue

and noise. The SLSC beamformer therefore utilizes the “short-

lag” region as its basis to differentiate tissue signal from noise.

In traditional SLSC beamforming, spatial coherence is mea-

sured by a normalized cross-correlation function, typically in

the form [44]:

R̂(n,m) =
1

N −m

N−m
∑

i=1

n+K/2
∑

k=n−K/2

si(k)si+m(k)

√

n+K/2
∑

k=n−K/2

s2i (k)
n+K/2
∑

k=n−K/2

s2i+m(k)

(3)

The normalized cross-correlation function is then integrated

Fig. 2. (top) B-mode image of the liver. Acoustic reverberation is present in
this image, but is difficult to detect because it appears similar to tissue texture.
(bottom) An SLSC images of the same liver, demonstrating a suppression of
the noise and an improvement in the visibility of anatomical structures that
are otherwise not visible due to the acoustic noise.

or summed over the lower-lag region to produce the image at

sample n:

SLSC(n) =

M
∑

m=1

R̂(n,m), (4)

where M indicates the maximum lag to integrate or sum

over and M < N . Typically, M is a value in the range

corresponding to 5–30% of the transmit aperture width (i.e.

the so-called “short-lag region”). The selection of M varies

depending on the imaging scenario, with simulated and phan-



tom images typically using the higher end of this range and

in vivo images typically using the lower end of this range. In

addition, while the exact spatial coherence computation can

be varied, the normalization aspect of it is important, because

large amplitude noise can dominate the image, even if only

small amount of coherence are present. An example of an

SLSC image and its impact on the suppression of acoustic

noise is shown in the bottom image of Fig. 2.

B. Image Characteristics

SLSC images look similar to B-mode images, but there are

several key differences. Because of the normalized signals, the

dynamic range of SLSC images is much smaller than that of

B-mode images and are better displayed using linear scales

rather than compressed scales, although in cases of relatively

high noise, light compression of the SLSC image can be

utilized to improve image quality [50]. In some cases, the

SLSC image can many times yield negative values, because

the normalized spatial coherence function can take on negative

values. Regardless, visual contrast of SLSC images is often

improved by utilizing a normalized display range of [0,1].

In addition, The contrast mechanism in SLSC images is

wavefront coherence, with bright pixels indicating high coher-

ence and dark pixels indicate little or no coherence. Thus, in

images that have regions of high-amplitude noise, the SLSC

image will be dark while the B-mode image generally shows

speckle or a hazy appearance. Compared to B-mode images,

the contrast mechanism of SLSC makes for useful anatomical

imaging but not for quantitative comparisons related to echo

amplitude. SLSC images are specifically designed for noisy

imaging conditions, and therefore do not necessarily produce

better images than B-mode when the SNR is high, but rather

show much more dramatic improvements in image quality

when the SNR is low [50].

Ideally, SLSC images should show a constant value with

diffuse scatterers, but the statistical variation of these imaging

targets yield a texture similar to, but smoother than, speckle.

In general, the speckle signal-to-noise ratio (µ/σ) is far higher

in SLSC imaging than in B-mode, and contrast targets such

as lesions generally have greater contrast and contrast-to-noise

ratio (CNR) in SLSC imaging than in B-mode [44, 50].

A less intuitive characteristic of SLSC images is the source

of contrast between two adjacent regions of diffuse scatterers

with different echo amplitudes. In this case, one would assume

that, due to the normalization in the SLSC computation, there

should be no contrast between these two regions because

they should produce the same spatial coherence function.

However, sidelobes from the transmit beam generate off-

axis echoes from the higher-amplitude region, which interfere

with the echoes in the lower-amplitude region. These off-

axis echoes introduce incoherent noise in the echoes from the

low-amplitude region, thereby decreasing the SLSC value and

generating contrast. As the distance into the lower amplitude

region grows, the off-axis signals become weaker and have less

an impact on the SLSC value. At sufficiently large distances,

the image value in the lower-amplitude region is the same as

the higher-amplitude region [44]. This effect is more apparent

in simulated and phantom images with low noise, but is

not often seen in vivo where acoustic and thermal noise is

almost always present and often hide this effect. Indeed, if

incoherent noise is added to the element signals in simulations

and phantoms, the effect is not observed [44, 50, 51]. Similarly,

randomization of the apodization of transmit aperture acts like

noise and can yield the same effect [52].

Resolution in SLSC images is dependent on several factors

[51]. Axial resolution is affected by the kernel size, K, and is

therefore slightly less than B-mode images, although methods

to achieve equivalent axial resolution to B-mode imaging is

described in the following section. Lateral resolution is more

difficult to quantify because it depends on the short-lag cutoff,

M , as well as the SNR of the element signals. Generally, a

smaller M corresponds to poorer resolution, as does a higher

SNR. Larger M and lower SNR correspond to higher lateral

resolution. In practice, the parameters and imaging conditions

selected for SLSC images generally lead to slightly worse

lateral resolution than B-mode imaging.

The depth-of-field (DOF) of SLSC images is dependent on

the transmitted pressure field. Narrow transmit beams generate

high- or partially-coherent wavefronts, while broad transmit

beams generate low-coherence wavefronts. In conventional

transmission with a fixed focus transmit beam, the DOF of the

resulting SLSC images is limited and often produces images

that are dark at the shallower depths, prior to the transmit

focal depth. Plane wave and broad transmissions are not well

suited for SLSC imaging, unless the transmissions are used

to generate synthetic transmit focusing [53], in which case

a narrow transmit beam is achieved at all locations thereby

producing high quality SLSC images.

C. Efficient SLSC Beamforming

The formulation of Eq. 3 is computationally demanding,

requiring orders of magnitude larger computational times than

traditional delay-and-sum beamforming. In addition, a finite

kernel size, K, is necessary in Eq. 3 in order to appropriately

normalize the coherence function. While the finite kernel size

improves texture SNR, it reduces resolution and increases

computational effort [54].

Application of SLSC beamforming in medical ultrasound

therefore requires faster and more efficient means. Hyun et al.

[54] proposed a series of computationally efficient approaches

to SLSC beamforming including computation of SLSC using

K=1 by use of a complex cross-correlation, downsampling

or subaperture beamforming in the aperture dimension, and

utilization of an ensemble calculation of Eq. 3.

Assuming si(n) is quasi-monochromatic, we can express

the channel signal in terms of a complex phasor si(n) =
ℜ
{

Si(n)e
jφ

i
(n)

}

, where Sx and φx are the magnitude and

phase of the channel signal. The covariance between two

complex signals si(n) and si+m(n) is then

C(n) = E
{

si(n)s
∗

i+m(n)
}

= E
{

Si(n)Si+m(n)ej(φi
(n)−φ

i+m
(n))

}

, (5)



where ∗ indicates the complex conjugate. For a real-valued

signal expressed as a complex-valued signal, the covariance

of the real-valued signal, C(n,m), is equal to half the real

part of the complex covariance C(n,m) [55], or

C(n,m) =
1

2
ℜ{C(m)}

= E

{

1

2
ℜ
{

Si(n)Si+m(n)ej(φi
(n)−φ

i+m
(n))

}

}

.

(6)

If si(n) and si+m(n) are windowed over K samples, and the

complex magnitudes Si(n) and Si+m(n) are approximately

constant over the K samples, then Eq. 6 can be written as

C(n,m) ≈
1

2
SiSi+m E

{

ℜ
{

ej(φi
(n)−φ

i+m
(n))

}}

, (7)

where Si and Si+m are constants. Using Eq. 7, the normalized

cross-correlation between si(n) and si+m(n) reduces to

R̂(n,m) ≈ E
{

cos
(

φi(n)−φi+m(n)
)}

≈
1

K

K
∑

k=1

cos (φi(n)− φi+m(n)) , (8)

where φi(n) and φi+m(n) are the phases of signals at sample

n. Eq. 8 is the estimated normalized cross-correlation between

the two element signals computed over a kernel length K,

and can approximate the normalized cross-correlation when

K=1. Eq. 8 is equivalent to taking the norm of the complex

multiplication si(n)s
∗

i+m(n) [54], or

R̂(n,m) =
si(n)s

∗

i+m(n)

|si(n)|
∣

∣s∗i+m(n)
∣

∣

. (9)

Using the formulation described in Eq. 9, Hyun et al. [54]

showed that spatial coherence computation time could im-

proved by a factor of 6.2 compared to conventional computa-

tion using a kernel equal to a wavelength. In addition, axial

resolution of the SLSC images improves, but at the expense

of a loss in texture SNR.

Computational efficiency is also attained by taking advan-

tage of the redundancy of spatial coherence information across

the aperture. This form of efficiency can be realized either

through subaperture delay-and-sum beamforming followed by

normalized cross-correlation of the beamformed subapertures

[54, 56], or by utilizing a subset of the individual element sig-

nals (e.g. utilizing every P th element signal) [54]. Subaperture

beamforming improves computational throughput, roughly 11

times faster than traditional SLSC for subaperture sizes of 4

elements, but tends to increase overall SLSC image values and

saturate the image. In comparison, uniform “downsampling”

of the aperture maintains consistent SLSC image quality and

achieves even greater computational throughput for the same

size data; for example, a 13 times faster throughput than

traditional SLSC by utilizing only every fourth element signal.

While Eq. 3 describes an intuitive measurement of co-

herence, an “ensemble” form of Eq. 3 is shown to reduce

Fig. 3. (top left) Traditional SLSC image of an apical 4-chamber view of
the heart using a kernel size of one wavelength. (top right) An SLSC image
using the complex correlation coefficient with K=1. (bottom left) An SLSC
image using the the ensemble complex correlation with K=1. (bottom right)
The same SLSC image using the ensemble complex correlation with K=1
and uniform downsampling of the elements by a factor of 2.

coherence estimator variance and improve overall SLSC image

quality [54]:

R̂ens
∆ (m) =

∑

∆ ssm
√

∑

∆ |s|
2 ∑

∆ |sm|
2
, (10)

where the signals s refers to all of the channel signals over all

K samples and sm refers to the same channel signals shifted

by a lag of m channels. The notation ∆ is utilized to indicate

the domain of all K samples over all channels.

Using an ensemble approach to coherence estimation yields

a slight improvement in computational throughput. However,

when combined with the complex correlation, the ensemble

estimator can be used to achieve greater efficiency in SLSC

image computation. In this case, an entire SLSC image can be

computed by complex correlation of all of the element signals

at once, with K=1, and then lowpass filtering the resulting

correlations with a rectangular window of length D to achieve

an effective kernel size K = D.

Fig. 3 shows examples of these efficient computational

techniques. In the upper left is a traditional SLSC image of an

apical 4-chamber view of the heart. Here, a kernel size equal

to a wavelength is used to form the image using Eqs.3 and

4. In the upper right image, the complex correlation in Eq. 9

is used with K=1. The lower left image utilizes the complex

correlation with the ensemble estimator in Eq. 10. The lower

right image is formed using the same process as the image

in the lower left, except that every other element signal is

dropped from the computation. The image in the lower right

has similar image quality to the image in the upper left, but

can be computed 20 times faster [54].

Another highly efficient approach to SLSC imaging is

to take advantage of the principle of acoustic reciprocity



[57]. Acoustic reciprocity enables the transmit and receive

aperture to be exchanged in the image formation process.

When combined with synthetic transmit aperture, the spatial

coherence function can be computed in the transmit aperture

domain, rather than in the receive aperture domain as is

done conventionally. In the acoustic reciprocity approach,

a single element is used for transmission, and delay-and-

sum beamforming is performed to produce a “low-resolution”

radiofrequency (RF) image. Instead of combining subsequent

element transmissions into a “high-resolution” RF image as

would be done with synthetic transmit focusing, the RF image

lines are correlated between transmit events. By utilizing the

downsampling of the aperture described above, high-quality

and efficient SLSC images can be produced [57]. Similarly,

modification of the acoustic reciprocity principle to the angular

domain allows spatial coherence images to be produced for

plane wave coherent compounding (i.e. plane wave synthetic

transmit focusing) [58].

IV. APPLICATIONS

SLSC has been applied to many imaging targets, including

abdominal, cardiac, and fetal ultrasound, and particularly in re-

spect to difficult-to-image patients. In addition, because SLSC

acts as a replacement for the delay-and-sum beamformer,

the beamformer can be combined with many existing ultra-

sonic imaging techniques, such as tissue harmonic imaging,

flow imaging, contrast-enhanced ultrasound, and photoacoustic

imaging. In the following, we review applications of SLSC

beamforming to in vivo imaging and other ultrasound imaging

modalities.

A. Anatomical Imaging

1) Abdominal: SLSC imaging has been applied to imaging

in vivo liver and its vasculature [59, 60] as well as kidney

[61]. In a pilot study of 17 subjects with poor, medium, and

high image quality, Jakovljevic et al. [59] utilized fundamental

and harmonic SLSC imaging to improve the visualization of

liver tissue and its vasculature. In this study, SLSC was shown

to improve contrast and CNR of the liver vascular under all

imaging conditions. Greater improvement in image quality

was observed with the subjects that were deemed to have

poor image quality. Smaller improvements were seen in the

medium and high quality images, although these results are

not unexpected given that high quality images will involve less

incoherent noise. In the harmonic version of SLSC imaging,

significant improvements were also observed in the poor

quality images, although the improvements were smaller than

that of the fundamental SLSC images owing to the fact that

harmonic imaging also contributes to the reduction in acoustic

clutter.

2) Cardiac: Echocardiography is a promising application

for SLSC imaging due to its susceptibility to many of the

factors that contribute to poor image quality. Echocardiography

has a limited acoustic window, meaning that there are few

positions on the chest wall for which images can be obtained.

If significant clutter is present in these acoustic windows, there

Fig. 4. SLSC images of the cerebral ventricles and brain of a fetus in a high
body-mass-index (BMI≥25) mother. The SLSC image shows reduced image
clutter and better overall delineation of the target structure compared to the
B-mode image.

are few opportunities to obtain images from other regions of

the chest. In addition, due to the rib cage, only the tissue

anterior to the rib cage can be compressed.

In a study involving 14 patients with sonographer-identified

poor image quality, SLSC imaging was compared to B-mode

imaging in conventional echocardiography [62]. In this study,

SLSC imaging demonstrated average contrast improvement of

8 dB and CNR improvement of 0.7. In addition, observer stud-

ies showed that SLSC decreased the number of endocardial

border segments that were not observed using conventional

B-mode imaging from 33% to 22%.

Hyun et al. [63] compared real-time SLSC imaging to con-

ventional B-mode imaging in stress echocardiography patients.

In this study, 15 patients were identified as having poor quality

due to the inability to visualize two consecutive endocardial

segments and thus required the administration of contrast

agent. In this study, SLSC imaging demonstrated improvement

in visualization of approximately 17% of the endocardial

segments in the apical four chamber and parasternal long axis

views. In one of the 15 patients, image quality was improved

with SLSC imaging such that no two consecutive segments

were not visualized, meaning that this patient would not have

required contrast agent with SLSC imaging.

3) Fetal: Kakkad et al. [64] utilized SLSC imaging to

image the fetus in pregnant women during the first trimester.

In this study, 11 maternal-fetal-medicine patients were imaged

and common fetal structures during the nuchal translucency

(NT) exam were targeted, including bladder, stomach, cerebral

ventricles, and NT. Fundamental and harmonic SLSC imag-

ing yielded consistent texture SNR and CNR improvement

over all sonographer-assessed image quality categories (good,

medium, and poor). Contrast was shown to generate the largest



Fig. 5. A comparison of conventional power Doppler (PD) and coherent flow
power Doppler (CFPD) applied to imaging of the liver vasculature. Notably,
CFPD demonstrates greater SNR and suppresses artifacts in the image. Narrow
branches of the demonstrated blood vessel are also better visualized in the
CFPD image.

improvement in the poor quality images, with medium and

high quality images showing non-significant improvement of

the targeted structures. Fig. 4 shows an example comparison

of B-mode and SLSC imaging of the fetal cerebral ventricles

in a difficult-to-image pregnant women.

B. Flow Imaging

The sensitivity of power Doppler imaging, particularly in

slow flow conditions, is limited by attenuation of the desired

signal by the wall filter and noise sources including electronic

noise, stationary or slowly moving tissue clutter, reverberation

clutter, and off-axis scattering from tissue. Because blood sig-

nal is similar to tissue signal, albeit at a much lower amplitude,

SLSC beamforming can be utilized to improve the sensitivity

of power Doppler imaging. This modality, called coherent flow

power Doppler, or CFPD, is shown to improve SNR of the

power Doppler signal and suppress both background thermal

noise and reverberation noise from tissue that leaks through

the wall filter [65, 66]. This additional sensitivity can be used

to improve the frame rate of power Doppler imaging, reduce

flash artifact, and detect slower flow [65] using identical pulse

sequences to conventional power Doppler. In small-diameter

vessels CFPD is shown to increase vessel SNR by 7.5–12.5 dB

under the same physiological conditions. An example of CFPD

applied to imaging of liver vasculature is shown in Fig. 5.

Fig. 6. SLSC beamforming applied to molecular imaging of pancreatic cancer
in a mouse model. (left) Molecular ultrasound imaging utilizing delay-and-
sum beamforming in the detection of pancreatic cancer. (right) Molecular
ultrasound utilizing SLSC beamforming in the same tumor.

C. Molecular Ultrasound imaging

High sensitivity is critical to molecular ultrasound imag-

ing, especially as this method transitions into clinic practice.

Clinical imaging includes additional challenges that are often

not observed in preclinical studies. For example, preclinical tu-

mors in mice are usually easily accessible with high-frequency

ultrasound and make wonderful images of the targeted contrast

agent. However, clinical tumors are usually embedded beneath

several centimeters of tissue, and include image degradation

via the mechanisms of phase aberration and reverberation

clutter previously described. In addition, clinical imaging

frequencies are also lower than that used in small animal

imaging, resulting in lower resolution. These challenges are

compounded by the inherently low signal-to-noise ratio (SNR)

resulting from the specialized pulses that are used to keep

the microbubbles intact, as well as the need to detect low

concentration of microbubbles that may be present in early

stage cancers. Application of SLSC imaging to molecular

ultrasound is shown in Fig. 6. In this image, the SNR of the

molecular imaging signal in a transgenic mouse model of a

pancreatic ductal carcinoma was improved by 9.3 dB in the

outlined region (compared to molecular imaging signal in a

normal tissue region outside the tumor).

D. Photoacoustic Imaging

1) Guided Surgeries: SLSC beamforming has be intro-

duced in photoacoustic imaging to guide surgeries [67]. In

endonasal surgery applications, bone impedes the optical

transmission, and therefore the laser fluence is decreased,

resulting in low SNR photoacoustic signals. In addition, bone

is highly reflective of acoustic signals, and therefore creates

incoherent reverberation within the nasal cavity. Application

of photoacoustic SLSC to guide endonasal surgery was used

to reduce image artifacts from the low SNR and acoustic

reverberations in the nasal cavity and improve detection of

blood vessels in the nasal cavity [68].

2) Brachytherapy Seed Detection: SLSC imaging is well

suited to the detection of brachytherapy seeds in prostate

cancer therapy. Brachytherapy seeds are difficult to detect

with conventional ultrasound imaging because the seed’s size,

shape, and orientation influence the response of the reflected



Fig. 7. Photoacoustic SLSC images of three brachytherapy seeds implanted
in an in vivo canine prostate. It is difficult to detect all three seeds in
the conventional photoacoustic images made from delay-and-sum (DAS)
beamforming. SLSC beamforming better visualizes the three seeds at both
lower and higher energy fluence levels [69].

wave. Photoacoustic imaging can yield better detection that

conventional ultrasound because the photoacoustic effect is

less impacted by the seed’s size, shape, and orientation.

Bell et al. [70] showed that SLSC imaging adapted to

photoacoustics for the purpose of brachytherapy seed de-

tection can improve brachytherapy seed contrast by up to

25 dB in cases [70]. In a preclinical study of in vivo canine

prostates, photoacoustic SLSC imaging was shown to improve

brachytherapy seed contrast by up to 20 dB [69]. More re-

cently, Bell et al. [71] developed a transurethral photoacoustic

imaging system that utilizes photoacoustic SLSC imaging. In

canine prostates, this system showed that photoacoustic SLSC

provided uniform contrast of brachytherapy seeds with depth,

while DAS-based photoacoustic imaging showed decreasing

contrast of brachytherapy seeds with depth.

V. CHALLENGES

SLSC beamforming is a technique designed to reduce

the impact of incoherent noise on image quality. While the

images produced with SLSC beamforming look similar to

those produced with delay-and-sum beamforming, there are

several aspects to this beamformer that make it inappropriate

for use in some areas of ultrasound imaging.

The SLSC beamformer reduces incoherent noise in the

output image, but not in the RF channel signals. The SLSC

beamforming process removes the phase from the received

signals, thereby making SLSC beamforming impossible for

tasks that require RF signals, such as displacement or speckle

tracking and velocity estimation.

One criticism of SLSC beamforming is the nonlinear re-

sponse of the imaging system to echo magnitude or power. The

nonlinear response occurs because the SLSC beamformer nor-

malizes the spatial coherence function, thereby removing echo

magnitude or power from the beamforming process. While

delay-and-sum beamfoming produces an image response that

is linear with respect to signal magnitude and flat with respect

to SNR, images using SLSC beamforming produces a response

that flat with respect to signal magnitude, flat at high SNR,

and linear at low SNR values [51, 65]. While this type of

response can be useful for anatomical imaging or detection

tasks (e.g. power Doppler or molecular signal detection), it

is compromised for tasks that require quantification, such as

backscatter coefficient estimation or perfusion imaging.

A common artifact in SLSC images is dark regions ap-

pearing adjacent to high-magnitude signals, such as point

targets. These regions occur for the same reason described

in Section III-B; that is, the high-magnitude target creates

strong off-axis scattering in the regions adjacent to the target,

which significantly decrease the coherence of the signals in

this region and thereby produce dark pixels in the SLSC image.

A significant challenge for SLSC beamforming is that it

is not easily implemented on many of the existing clinical

platforms. Because clinical platforms are designed to rapidly

process channel signals with the delay-and-sum beamformer,

proper access to the required channel signals is not easily

obtained to perform SLSC beamforming. It is likely that

software beamformers will be needed for wider adoption of

this beamforming technique. In addition, the texture differ-

ence in SLSC images require modification to existing post-

processing techniques that attempt to improve general image

quality (e.g. speckle reduction). Investment in the refinement

of post-processing techniques will also be required for clinical

translation of this beamformer.

VI. CONCLUSIONS

Short-lag spatial coherence (SLSC) beamforming is a tech-

nique that utilizes the spatial similarity of the wavefronts

sampled by the transducer aperture to form images. The

beamformer is designed to mitigate image quality degradation

due to incoherent noise, such as acoustic reverberation from

tissue layers or noise from the ultrasound system electron-

ics. SLSC beamforming has been adapted to many existing

imaging modalities to improve image quality or provide better

detection of specific targets, and has been applied to many

clinical imaging scenarios. In general, SLSC images generate

improved contrast, contrast-to-noise ration, and image texture

compared to conventional B-mode images. While considerable

improvement has been shown in cardiac, fetal, and abdominal

imaging scenarios, software beamforming systems will be

necessary to fully adopt this technique in the future.

ACKNOWLEDGMENTS

Much of this work is has been supported by the National

Institute of Biomedical Imaging and Bioengineering with

grants R01-EB013361, R01-EB015506, R00-EB018994, and

R01-EB017711 and by the Human Placenta Project through

the Eunice Kennedy Shriver National Institute of Child Health

and Human Development under award R01-HD086252. The

authors would also like to thank Siemens Healthineers for their

in-kind and technical support.

REFERENCES

[1] R. N. Uppot, D. V. Sahani, P. F. Hahn, M. K. Kalra, S. S. Saini, and P. R.
Mueller, “Effect of obesity on image quality: fifteen-year longitudinal
study for evaluation of dictated radiology reports,” Radiology, vol. 240,
no. 2, pp. 435–439, 2006.

[2] R. N. Uppot, “Impact of obesity on radiology,” Radiologic Clinics of

North America, vol. 45, no. 2, pp. 231–246, 2007.



[3] A. Shmulewitz, S. A. Teefey, and B. S. Robinson, “Factors affecting
image quality and diagnostic efficacy in abdominal sonography: A
prospective study of 140 patients,” J Clin Ultrasound, vol. 21, no. 9,
pp. 623–630, 1993.

[4] H. M. Wolfe, R. J. Sokol, S. M. Martier, and I. E. Zador, “Maternal
obesity: A potential source of error in sonographic prenatal diagnosis,”
Obstet Gynecol, vol. 76, no. 3 Pt 1, pp. 339–342, 1990.

[5] I. Hendler, S. C. Blackwell, E. Bujold, M. C. Treadwell, H. M. Wolfe,
R. J. Sokol, and Y. Sorokin, “The impact of maternal obesity on
midtrimester sonographic visualization of fetal cardiac and craniospinal
structures,” Int J Obes Relat Metab Disord, vol. 28, no. 12, pp. 1607–
1611, 2004.

[6] J. V. Garrett, M. A. Passman, R. J. Guzman, J. B. Dattilo, and T. C.
Naslund, “Expanding options for bedside placement of inferior vena
cava filters with intravascular ultrasound when transabdominal duplex
ultrasound imaging is inadequate,” Ann Vasc Surg, vol. 18, no. 3, pp.
329–334, 2004.

[7] F. R. Khoury, H. M. Ehrenberg, and B. M. Mercer, “The impact of
maternal obesity on satisfactory detailed anatomic ultrasound image
acquisition,” J Matern Fetal Neonatal Med, vol. 22, no. 4, pp. 337–
341, 2009.

[8] C. L. Ogden, M. D. Carroll, B. K. Kit, and K. M. Flegal, “Prevalence
of childhood and adult obesity in the United States, 2011–2012,” JAMA,
vol. 311, no. 8, pp. 806–814, 2014.

[9] K. M. Flegal, M. D. Carroll, R. J. Kuczmarski, and C. L. Johnson,
“Overweight and obesity in the United States: Prevalence and trends,
1960–1994,” Int J Obes Relat Metab Disord, vol. 22, no. 1, pp. 39–47,
1998.

[10] K. M. Flegal, M. D. Carroll, C. L. Ogden, and C. L. Johnson, “Preva-
lence and trends in obesity among U.S. adults, 1999–2000,” JAMA, vol.
288, no. 14, pp. 1723–1727, 2002.

[11] K. M. Flegal, M. D. Carroll, C. L. Ogden, and L. R. Curtin, “Prevalence
and trends in obesity among US adults, 1999–2008,” JAMA, vol. 303,
no. 3, pp. 235–241, 2010.

[12] E. H. I. Survey, “Overweight and obesity - bmi statis-
tics,” Retrieved from http://ec.europa.eu/eurostat/statistics-
explained/index.php/Overweight and obesity - BMI statistics and
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=hlth ehis bm1e
&lang=en, 2014.

[13] R. S. Finkelhor, M. Moallem, and R. C. Bahler, “Characteristics and
impact of obesity on the outpatient echocardiography laboratory,” Am J

Cardiol, vol. 97, no. 7, pp. 1082–1084, 2006.
[14] S. W. Flax and M. O’Donnell, “Phase-aberration correction using signals

from point reflectors and diffuse scatterers: Basic principles,” IEEE

Trans Ultrason Ferroelect Freq Contr, vol. 35, no. 6, pp. 758–767, 1988.
[15] L. Nock, G. E. Trahey, and S. W. Smith, “Phase aberration correction

in medical ultrasound using speckle brightness as a quality factor,” J

Acoust Soc Am, vol. 85, no. 5, pp. 1819–1833, 1989.
[16] D.-L. Liu and R. C. Waag, “Time-shift compensation of ultrasonic pulse

focus degradation using least-mean-square error estimates of arrival
time,” J Acoust Soc Am, vol. 95, no. 1, pp. 542–555, 1994.

[17] K. W. Rigby, E. A. Andarawis, C. L. Chalek, B. H. Haider, ,
M. O’Donnell, L. S. Smith, and D. G. Wildes, “Improved In Vivo

abdominal image quality using real-time estimation and correction of
wavefront arrival time errors,” in Proc IEEE Ultrason Symp, vol. 2,
2000, pp. 1645–1653.

[18] J. J. Dahl, M. S. Soo, and G. E. Trahey, “Clinical evaluation of combined
spatial compounding and adaptive imaging in breast tissue,” Ultrason

Imaging, vol. 26, no. 4, pp. 203–216, 2004.
[19] J. J. Dahl, S. A. McAleavey, G. F. Pinton, M. S. Soo, and G. E. Trahey,

“Adaptive imaging on a diagnostic ultrasound scanner at quasi real-time
rates,” IEEE Trans Ultrason Ferroelect Freq Contr, vol. 53, no. 10, pp.
1832–1843, 2006.

[20] A. T. Fernandez, K. L. Gammelmark, J. J. Dahl, C. G. Keen, R. C.
Gauss, and G. E. Trahey, “Synthetic elevation beamforming and image
acquisition capabilities of an 8x128 1.75D array,” IEEE Trans Ultrason

Ferroelect Freq Contr, vol. 50, no. 1, pp. 40–57, 2003.
[21] J. C. Lacefield and R. C. Waag, “Time-shift estimation and focusing

through distributed aberration using multirow arrays,” IEEE Trans

Ultrason Ferroelect Freq Contr, vol. 48, no. 6, pp. 1606–1624, 2001.
[22] G. F. Pinton, G. E. Trahey, and J. J. Dahl, “Sources of image degradation

in fundamental and harmonic ultrasound imaging: A nonlinear fullwave
simulation study,” IEEE Trans Ultrason Ferroelect Freq Contr, vol. 58,
no. 6, pp. 1272–1283, 2011.

[23] J. J. Dahl and N. M. Sheth, “Reverberation clutter from subcutaneous
tissue layers: Simulation and in vivo demonstrations,” Ultrasound Med

Biol, vol. 40, no. 4, pp. 714–726, 2014.

[24] M. Muir, P. Hrynkow, R. Chase, D. Boyce, and D. McLean, “The
nature, cause, and extent of occupational musculoskeletal injuries among
sonographers: Recommendations for treatment and prevention,” J Diagn

Med Sonog, vol. 20, no. 5, pp. 317–325, 2004.

[25] T. Christopher, “Finite amplitude distortion-based inhomogeneous pulse
echo ultrasonic imaging,” IEEE Trans Ultrason Ferroelect Freq Contr,
vol. 44, no. 1, pp. 125–139, 1997.

[26] M. A. Averkiou, D. N. Roundhill, and J. E. Powers, “A new imaging
technique based on the nonlinear properties of tissues,” in Proc IEEE

Ultrason Symp, vol. 2, 1997, pp. 1561–1566.

[27] F. Tranquart, N. Grenier, V. Eder, and L. Pourcelot, “Clinical use of
ultrasound tissue harmonic imaging,” Ultrasound Med Biol, vol. 25,
no. 6, pp. 889–894, 1999.

[28] S. Choudhry, B. Gorman, J. W. Charboneau, D. J. Tradup, R. J. Beck,
J. M. Kofler, and D. S. Groth, “Comparison of tissue harmonic imaging
with conventional US in abdominal disease,” RadioGraphics, vol. 20,
no. 4, pp. 1127–1135, 2000.

[29] S. J. Rosenthal, P. H. Jones, and L. H. Wetzel, “Phase inversion
tissue harmonic sonographic imaging: A clinical utility study,” Am J

Roentgenol, vol. 176, no. 6, pp. 1393–1398, 2001.

[30] K. S. Sodhi, R. Sidhu, M. Gulati, A. Saxena, S. Suri, and Y. Chawla,
“Role of tissue harmonic imaging in focal hepatic lesions: Comparison
with conventional sonography,” J Gastroenterol Hepatol, vol. 20, no. 10,
pp. 1488–1493, 2005.
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