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Abstract—Photoacoustic imaging is often used to visualize
point-like targets, including circular cross sections of small
cylindrical implants like brachytherapy seeds as well as circular
cross sections of metal needles. When imaging these point-
like targets in the presence of highly echogenic structures, the
resulting image will suffer due to reflection artifacts which
appear as true signals in the traditional beamformed image.
We propose to use machine learning methods to identify these
types of noise artifacts for removal. A deep convolutional neural
network was trained to locate and classify source and reflection
artifacts in photoacoustic channel data simulated in k-Wave.
Simulated channel data contained one source and one artifact
with varying target locations, medium sound speeds, and -3dB
channel noise. In testing 3,998 simulated images, we achieved a
99.1% and 98.8% success rate in classifying sources and artifacts,
respectively, while obtaining a misclassification rate below 3.1%,
where a misclassification was defined as a source or artifact
detected as an artifact or source, respectively. The network,
which was only trained on simulated data, was then transferred
to experimental data with 100% source classification accuracy
and 0.40 mm mean source location accuracy. These results
are promising as they show that a network trained with only
simulated data can distinguish experimental sources and artifacts
in photoacoustic channel data and display this information in a
novel artifact-free image format.

I. INTRODUCTION

Photoacoustic imaging is used to visualize optical properties
through the preferential absorption of light [1], [2]. Structures
in the body absorb the light which causes thermal expansion
and creates a pressure wave that can be sensed with an ultra-
sound transducer and reconstructed (or beamformed) for image
display. However, photoacoustic images are often degraded
by strong acoustic reflections from hyperechoic structures.
Traditional beamforming techniques involving time-of-flight
models are not capable of reconstructing true acoustic sources
when multiple scattering events are involved. Thus, reflections
are mapped to incorrect locations in the resulting beamformed
image. This can be problematic in clinical applications of
photoacoustic imaging, where an image read by a clinician
can potentially be incorrect or misleading.

There are several potential medical applications of pho-
toacoustic imaging which are affected by these reflection
artifacts. Such applications include brachytherapy for treat-
ment of prostate cancer [3], in which brachytherapy seeds are
visualized using photoacoustic imaging and the channel data

is processed using either traditional delay-and-sum methods
or short-lag spatial coherence imaging [4]. With both imaging
methods it is difficult to differentiate between signals orig-
inating from the seed and those originating from reflection
artifacts. Similarly, metal needles are ideal photoacoustic tar-
gets because of their high optical absorbance, but they are also
affected by reflection artifacts (and increased background noise
when applying filtering methods to reduce reflection artifacts)
[5]. Reflections can also be caused tissue structures inside the
subcutaneous fat layer [6].

PAFUSion [6], [7] uses ultrasound data to mimic the wave-
fields produced by photoacoustic sources and identify reflec-
tion artifacts for removal. However, this method makes the
assumption of shared acoustic pathways for both ultrasound
and photoacoustic data which is not always true. This method
therefore has limited potential in a real-time environment (due
to the requirement for matched ultrasound and photoacoustic
images).

We propose to address outstanding challenges with re-
flection artifact reduction by employing deep convolutional
neural networks (CNNs) [8]–[11]. CNNs have seen increasing
popularity due to their success in modeling highly complex
problems like those in image processing [8]. These networks
can potentially be applied as an alternative to photoacoustic
beamforming [12].

Bell and Reiter [12] showed that a deep network can be
used to locate photoacoustic signals in channel data with an
average positional accuracy of 0.28 mm and 0.37 mm in the
depth and lateral image dimensions, respectively. Expanding
on this work, we trained a deep neural network with simulated
-3dB SNR photoacoustic channel data to locate and distinguish
between sources and artifacts. We evaluated its performance
on both simulated channel data with -3dB channel SNR and
experimental channel data. Finally, we present a method for
artifact removal utilizing the outputs of the CNN.

II. METHODS

We trained a Faster-RCNN algorithm [11], VGG16 CNN
network architecture [13] using photoacoustic channel data
simulated with k-Wave [14]. Each image contained one 0.1
mm point source and one artifact. Photoacoustic sources were
simulated with the range and increment size of our simulation



TABLE I: Range and Increment Size of Simulation Variables

Parameter Min Max Increment
Depth Position (mm) 5 25 0.25
Lateral Position (mm) 5 30 0.25
Speed of Sound (m/s) 1440 1640 6

variables listed in Table I. As reflection artifacts tend to have
a wave shape that is characteristic of signals at shallower
depths, it is possible to simulate these artifacts by shifting a
source signal deeper into the image. To generate the reflection
artifacts, a photoacoustic source was shifted deeper in the
image by the Euclidean distance, ∆, as described by the
equation:

|∆| =
√

(zs − zr)
2

+ (xs − xr)
2 (1)

where (xs, zs) are the 2D spatial coordinates of the source
location and (xr, zr) are the 2D spatial coordinates of the
physical reflector location.

To create a dataset large enough to train the network, point
target locations were randomly selected from all possible
source locations, while artifact locations were randomly se-
lected from all possible points located less than 10 mm from
the source. White Gaussian noise was added to each image
at -3dB SNR, as most channel data contains some amount of
noise. A total of 19,992 channel data images were synthesized
for this simulated dataset, and 80% of the images were used
for training while the remaining 20% of the images were used
for testing.

The Faster R-CNN outputs consisted of the classifier pre-
diction, corresponding confidence score (a number between
0 and 1), and the bounding box image coordinates for each
detection. These detections were evaluated according to their
classification results as well as their depth, lateral, and total
positional errors.

Detections were classified as correct if the intersect-over-
union (IoU) of the ground truth and detection bounding box
was greater than 0.5 and their score was greater than an
optimal value. This optimal value for each class and each
network was found by first defining a line with a slope equal
to the number of negative detections divided by the number of
positive detections, where positive detections were defined as
detections with a IoU greater than 0.5. This line was shifted
from the ideal operating point (true positive rate of 1 and false
positive rate of 0) down and to the right until it intersected
with the receiver operating characteristics (ROC) curve. The
point at which it first intersected with the ROC curve was
determined to be the optimal score threshold. The ROC curve
was created by varying the confidence threshold and plotting
the rate of true and false positives at each tested threshold. The
ROC curve indicates the quality of object detections made by
the network. Misclassifications were defined to be a source
detected as an artifact or an artifact detected as a source,
and missed detections were defined as a source or artifact
being detected as neither a source nor artifact. In addition to
classification, misclassification, and missed detection rate, we

also considered precision, recall, and area-under-curve (AUC)
for the ROC curve.

We performed a controlled experiment to determine the
feasibility of training with simulated data for the eventual
identification and removal of artifacts in real data acquired
from patients in a clinical setting. A 1 mm core diameter
optical fiber was inserted in a needle and placed in the imaging
plane between the transducer and a sheet of acrylic. This setup
was placed in a water tank. The optical fiber was coupled
to a Quantel (Bozeman, MT) Brilliant laser. When fired, the
laser light from the fiber tip creates a photoacoustic signal
in the water which propagates in all directions. This signal
travels both directly to the transducer, creating the source
signal, and to the acrylic which reflects the signal to the
transducer, creating the reflection artifact. Seventeen channel
data images were captured, each after changing the location
of the transducer while keeping the laser and acrylic spacing
fixed. The mean channel SNR of the experimental data was
measured as 0.1dB and the artifacts were labeled by hand after
observing the B-mode image.

After obtaining detection and classification results for the
simulated and experimental data, we used the network outputs
to display only the locations of the detected source signals in
the image.

III. RESULTS & DISCUSSION

A. Classification Accuracy

As shown in Fig. 1(a) our proposed network correctly
classified sources and artifacts 99.1% and 98.9% of the time,
respectively, and the misclassification rate was 11.8% and
10.8% for sources and artifacts, respectively, as shown in
Fig. 1. Although these misclassification rates seem large, we
noticed that there were several special cases where artifacts
and sources overlapped, causing confusion in the source and
artifact classifications. For example, artifacts that overlapped
sources were detected and the corresponding bounding box
was in the same location as the source bounding box, which
caused an increase in our misclassification rates. We therefore
took one additional step to report results after excluding the
special overlapping cases from our analysis and obtained
misclassification rates of 2.1% and 3.1% for sources and
artifacts, respectively.

Fig. 1(b) shows the corresponding ROC curves for the
sources and artifacts. The result for sources is shown in blue
and the result for artifacts is shown in red with true positive
rate on the vertical axis and false positive rate on the horizontal
axis. In addition, precision, recall, and AUC all exceed 0.96.
These factors confirm that our CNN is well suited to detect
wavefronts in photoacoustic channel data as well as distinguish
where they originated. While this work is primarily concerned
with objects with circular cross-sections, this method can be
extended to include objects with different shapes by training
with different initial pressure distributions.

In addition to the simulation results, Fig. 1(a) shows that the
percentage of correct source and artifact detections were 100%
and 54.1%, respectively, for the 17 experimental images. The
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Fig. 1: (a) Classification results. The bars from left to right
show the accuracy of sources and artifact detections, the
misclassification rate for sources and artifacts, the missed
detection rate for sources and artifacts, and the misclassifica-
tion rate for sources and artifacts after removing overlapping
sources and artifacts from calculations. (b) Source and artifact
ROC curves for simulated data.

TABLE II: Summary of Classification Performance

Dataset Source Artifact
Precision Recall AUC Precision Recall AUC

Simulated 0.9912 0.9910 0.9989 0.9744 0.9887 0.9689

network provided more misclassifications (23.5% for sources
and 8.3% for artifacts) when compared to its performance
on simulated data (2.1% for sources and 3.1% for artifacts)
due to lower confidence score. In addition, the artifact missed
detection rate is higher at 45.83%, likely due to the presence of
multiple reflections.. Despite these large errors, we will show
in Section III.C that the source accuracy result is of primary
interest for our chosen artifact removal method. Therefore, this
result indicates that a network trained with only simulated
channel data can be transferred to experimental data while
maintaining a high level of performance for source detection
and classification.

B. Location Errors

The box-and-whiskers plots in Fig. 2 demonstrate the depth
and lateral errors for sources and artifacts for the simulated
data. The top and bottom of each box represents the 75th
and 25th percentiles of the measurements, respectively. The
line inside each box represents the median measurement, and
the whiskers (i.e., lines extending above and below each box)
represent the range. Outliers were defined as any value greater
than 1.5 times the interquartile range and are displayed as
dots. Fig. 2(a) show that the networks are more accurate in
the depth dimension, where errors (including outliers) were
frequently less than 0.6 mm, when compared to errors in the
lateral dimension (Fig. 2(b)), where outliers were as large as
1.5-2.0 mm. However, in both cases, the median values were
consistently less than 0.1-0.5 mm. These results indicate that

(a)

(b)

Fig. 2: Summary of distance errors for all tested simulated
data in the depth (a) and lateral (b) dimensions for sources
and artifacts. Note that our depth errors are consistently lower
than our lateral errors.

in addition to providing excellent source classification results,
our network also provides accurate position estimates of true
source locations.

C. Artifact Removal

Fig. 3 shows the results of our method for removing
artifacts. Sample channel input data to the network is shown
in Fig. 3 (a), and the corresponding B-mode image is shown in
Fig. 3 (b). To display objects which were classified as sources
(Fig. 3 (e)), a disc-shaped object was placed at the center of
the detected bounding box and displayed with a diameter of
±2σ, where σ refers to the standard deviation of the location
errors shown in Fig. 2.

Each experimental image had one source signal and at least
one reflection artifact, as shown in Fig. 3(d). We know that
only one of these signals is a true source, because we only
had one source in the image. The corresponding beamformed
image Fig. 3(e) shows the problematic reflection artifact being
removed in Fig. 3(f). We additionally note that several of the
experimental images contained multiple reflection artifacts due
to reverberations from the walls of the water tank, as seen
in Fig. 3(g), yet these multiple artifacts, clearly present in
the beamformed image (Fig. 3(h)), do not affect our artifact
removal method (Fig. 3(i)).

In these three cases (Figs. 3(c), 3(f) and 3(i)), one major
benefit of our display method is that we can visualize true
sources with an arbitrarily high contrast. The new image is
not corrupted by reflection artifacts because we do not display
them, and we therefore achieve noise-free, high resolution
images of the original point target.

IV. CONCLUSION

We trained a CNN using simulated images of photoacoustic
channel data and showed that the network can distinguish
between a simulated source and artifact in the presence of
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Fig. 3: Sample images from channel data (a) before and (b) after applying traditional beamforming. Artifact removal with a
(c) CNN-based image that displays the location of the detected source based on the location of the bounding box. The red
box in (a) indicates the portion of the images displayed in (b,c). (d) Sample image of experimental channel data containing
one source and an associated reflection artifact. (e) Corresponding beamformed image. (f) Corresponding image created with
our CNN-based artifact removal method. (g) Sample image of experimental channel data containing one source and multiple
reflection artifacts. (h) Corresponding beamformed image (i) Corresponding image created with our CNN-based artifact removal
method.

channel noise. We also demonstrated that we can accurately
locate sources and artifacts in simulated images. In addition,
our network was successfully transferred to experimental data
without any additional training and achieved similar classifica-
tion performance when detecting true sources. This approach
highlights the potential for elimination of reflection artifacts
for interventional photoacoustic images and a similar concept
could potentially be applied to improve ultrasound image
quality.
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