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A new age of medicine is dawning 
fast, as deep learning takes hold. 

Deep learning, a smarter, more versatile, 
and far more powerful version of artifi-
cial intelligence (AI) than its predecessor, 
machine learning, excels at making sense 
of mountains of complex, unstructured 

data, the kind modern medicine cre-
ates by the exabyte. Everyone, from 
well-heeled tech giants to small start-up 
firms, is racing to exploit its impressive 
data-mining and predictive capabilities. 

The pace of advances has been dizzy-
ing. Last September, Nicole Hemsoth, 
co-founder of The Next Platform, an 
online publication that covers high-per-
formance, platform-based computing, 
wrote that “significant hardware and al-

Life-altering changes — in the form of new products and services — are on the horizon as 
researchers rush to apply deep-learning technology to solve a wide range of complex, and 
previously elusive, medical problems.

By Jon Reisfeld, SWE Contributor

gorithmic developments” in the prior 12 
months were “propping up what appears 
to be an initial Cambrian explosion 
of new applications for deep-learning 
frameworks in areas as diverse as energy, 
medicine, physics and beyond.”  
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What is the science driving these in-
novations? Machine learning and deep 
learning are two forms of AI modeled 
on how the human brain works. AI en-
ables computers to learn without being 
explicitly programmed. The computers 
use algorithms, instead of groups of 
neurons, to separately analyze and 
then compare patterns in data. Given 
enough examples of inputs and desired 
outputs, these systems can learn to ac-
curately predict new results from  
new information.

The primary difference between 
machine learning and deep learning is a 
matter of degree. Machine learning pro-
cesses information with no more than 
two algorithms. Deep learning, theoreti-
cally, has no limits. Some deep- learning 
systems use 1,000 algorithms or more. 
The more algorithms used, the greater 
the degree of complexity the thinking 
network can handle.

Machine learning’s computing power 
was limited, initially, to the number-
crunching ability of a single central 
processing unit (CPU) – the type of pro-
cessor that runs a typical laptop or work 
station. But in 2012, graphic processing 
units (GPUs), the kind that run data-
intense video games, became available in 

parallel and expandable configurations. 
That faster, more robust computing 
power led to the development of deep-
learning networks that could, just as 
quickly, handle a virtually unlimited 
number of algorithms.

This article will give you a feel for 
what’s possible, by offering a close-up 
look at three AI medical-related projects. 

LESS IS MORE? A NEW ROLE FOR  
AI IN MEDICINE

Biomedical engineer and Johns 
Hopkins University Assistant Professor 
Muyinatu Bell, Ph.D., whose name 
appeared on MIT Technology Review’s 
2016 list of the world’s top “35 Innovators 
Under 35,” is at it again — innovating. 
This time, Dr. Bell, who founded and 
runs Hopkins’ new Photoacoustic 
and Ultrasonic Systems Engineering 
(PULSE) Lab, has turned her attention to 
eliminating the noise, acoustic clutter, 
and reflective artifacts that consistently 
plague ultrasound and photoacoustic 
biomedical scans, to varying degrees.

Dr. Bell and her research partner,  
Austin Reiter, Ph.D., a Hopkins com-
puter scientist and assistant research 
professor, are in the early stages of 

training their machine-learning model 
to perform an odd assignment: They 
want it to identify and extract noise, 
rather than useful information, from 
a biomedical scanner’s raw signal feed 
before sending it onto the image display.

“The machine-learning network will 
learn what images should look like by 
studying a large body of simulated im-
ages that we create,” Dr. Bell explained. 
“And then, it will detect and remove 
artifacts when they appear.”

The smarter the network gets, the 
clearer the final scans should look. In 
effect, Drs. Bell and Reiter will be train-
ing the network to act as a smart signal 
processor, bypassing the signal proces-
sors supplied by scanner manufacturers. 
That’s necessary, Dr. Bell explained, 
because both ultrasound and photo-
acoustic imaging processors rely on a 
shared set of faulty assumptions that 
will inevitably produce random noise, 
acoustic clutter, and reflective artifacts 
under the right conditions.
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The first faulty assumption is that 
sound waves originating in the body will 
always travel directly from their source 
to an externally placed transducer, 
without encountering any reflective 
bodies, such as bones, along the way. 
The assumption doesn’t allow for the 
possibility of echoes.

The second assumption is that sound 
waves move consistently through the 
body at standard, predictable rates, 
for all people. “In our bodies, all those 
parameters are highly variable,” Dr. Bell 
explained. “That’s another flaw: It’s 
geometrically based on varying medium 
properties.”

Poor-quality scans can have serious 
consequences. “Overweight patients 
tend to have very poor ultrasound 
image quality,” Dr. Bell said, because 
fat deposits scatter ultrasound signals. 
The resulting noise can make scans far 
less useful for early detection of cancer 
lesions and tumors.

Photoacoustic imaging, on the other 
hand, primarily produces reflective ar-
tifacts. These vary, depending on where 
the scan originates within the body. 
Areas with lots of highly reflective bone 
surfaces will produce more echoes than 
areas without them. These duplicate im-
ages, she said, are especially problematic. 
“They can cloud the image and make it 
appear as if you have two photoacoustic 
signals where there should only be one.”

Dr. Bell deals with these kinds of 
image abnormalities every day at the 
PULSE Lab, a highly interdisciplinary re-
search program that brings biomedical, 
mechanical, and electrical engineers; 
computer scientists; and robotics 
experts together to design advanced 
imaging systems for surgical guidance 

and other uses. “The 
field is really suffering 

from reflection 
artifacts,” she said. 
And finding a 
way to eliminate 
them is what first 

led her to consider 
machine learning.

For the initial round of machine-
learning training, Drs. Bell and Reiter 
used an extremely simple reflective 
artifact training model. They used a 
special simulation software program 
to create 30,000 data pairs. Each pair 
contained the location of a real, surgical 
tool tip and its reflective artifact. The 
pairings were created by establishing the 
surrounding environmental conditions 
and a host of other factors. They labeled 
the first 20,000 pairs correctly and 
turned the machine-learning network’s 
off-the-shelf algorithm loose, looking for 
patterns in the data. Meanwhile, they 
held the remaining 10,000 unlabeled 
pairs back — for use testing the trained 
network’s predictive powers.

“The idea,” Dr. Bell said, “is to train 
the network to know where the true 
signal is and to identify anything else as 
a false signal and remove it.”

When they ran the test on the 
unlabeled pairs, they were pleasantly 
surprised. “So far, preliminary results 
are looking good,” Dr. Bell said. “We got 
submillimeter errors in point locations.” 
The next step is to test different off-

the-shelf algorithms to see whether one 
outperforms another.

If the concept ultimately proves 
viable, she said, the technology could 
make future photoacoustic images echo 
free. That would encourage surgeons 
to adopt photoacoustic-based surgical 
guidance systems.

What’s the long-term potential?
“We’re starting with simple models 

but hoping it can scale to more compli-
cated cases that would be representative 
of ultrasound,” Dr. Bell said. “If it does, 
then it’s cleaning up ultrasound images, 
which everybody would love, and ultra-
sound is already a widely available tool 
in the clinic with known limitations. 
So, if we can get rid of those limitations, 
which I’m attempting to do, then it 
will certainly have large-scale impact, 
especially for patients known to produce 
poor-quality images.”

Then, Dr. Bell took a breath and 
smiled. “I’m still not too sure how well it 
will work,” she said, “because it’s still in 
the middle; it’s not an end-product yet. 
The research is ongoing. Although, I’m 
very excited and I believe in the results; 

Hoifung Poon, Ph.D., computer scientist and leader of Microsoft’s Project Hanover, described the 
effort: “We’re imagining a service where you can input 500 mutations found in a specific cancer, push 
a button, and have it generate a clinical report right away…That’s the intelligence-gathering part that 
occupies tumor boards today, only now it will take seconds to do.”
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there’s no telling what’s going to happen 
as we continue on this path.”

PRECISION CANCER TREATMENTS FOR 
ALL! NOT TOMORROW, BUT SOON

Before more than a tiny percentage of 
cancer patients can enjoy the enormous 
benefits of precision medicine, someone, 
somewhere, must do the impossible: 
They must find a way to eliminate the 
weeks of medical research currently 
required at the outset of each new 
cancer case.

Hoifung Poon, Ph.D., computer sci-
entist and leader of Microsoft’s Project 
Hanover, is on the job. Dr. Poon and 
his small team of computer scientists, 
aided by collaborators both inside and 
outside Microsoft, are using deep learn-
ing and machine reading to automate 
and replace today’s time-consuming 
tumor board research with “an artificial 
intelligence-powered tumor board for 
the future.”

When they’re done, Dr. Poon said, the 
cloud-based data gathering and decision 
support system they’re building will be 

able to simultane-
ously accept in-depth 
cancer patient disease 
profiles from oncolo-
gists everywhere, and 
in seconds rather than 
weeks, return compre-
hensive, up-to-date medical research 
reports. “We’re imagining a service 
where you can input 500 mutations 
found in a specific cancer, push a button, 
and have it generate a clinical report 
right away,” Dr. Poon said. “That report 
would tell you, ‘Here is all we know 
about these gene mutations and here is 
what we know about the relevant drugs.’ 
That’s the intelligence-gathering part 
that occupies tumor boards today, only 
now it will take seconds to do.”

PHASE ONE: TURNING INFORMATION 
INTO KNOWLEDGE

The first challenge, and it’s huge, is to 
build a self-directed, curated, structured 
database to house all known informa-
tion on gene pathways, gene regulation, 
gene expression, cancer mutations, drug 

action mechanisms — and more. The 
database must automatically update itself 
by scanning new published reports, start-
ing with those contained in PubMed, 
a database maintained by the National 
Center for Biotechnology Information.

“PubMed currently contains 26 mil-
lion medical research papers,” Dr. Poon 
said, “but the most problematic part 
is that each year it adds over 1 million 
more. That’s why we want to automate 
this reading process.”

The other challenge is language 
ambiguity. “You can have the same kind 
of facts expressed differently,” Dr. Poon 
explained. In addition, the same terms 
can, depending on the context, mean 
completely different things. Dr. Poon 
and his team are using the Literome 
database, which they developed before 
Project Hanover launched in the sum-
mer of 2015, to do the machine reading, 

aided by natural language processing 
(NLP) technology and Microsoft’s 

Statistical Parsing and Linguis-
tics Analysis Toolkit (SPLAT).

They’ve expanded Literome’s 
mission to include tracking and 
storing data on individual drugs 

and their potential impacts on 
genes and gene mutations. That 

way, Literome will be able to predict 
which drugs will prove most effec-
tive against specific cancers. They’re 
also continuing to refine Literome’s 
machine-reading capabilities. “We need 
to use machine learning here,” he said, 
“because you don’t want to manually 
code all these patterns.”

Years ago, Dr. Poon said, the National 
Cancer Institute teamed up with Nature 
magazine to develop a human-curated 
database. “They came out with this 
database — very high quality — but they 
gave up after two years. The database 
contained information on about 10,000 
unique gene regulation pairs.”

In contrast, Literome, using machine-
reading technology, already has 
extracted data on 1 million unique gene 
pairs. “Once we develop the machine-
reading mechanism and finish the 

Muyinatu Bell, Ph.D., biomedical engineer, assistant professor, and founder and director of the new 
Photoacoustic and Ultrasonic Systems Engineering (PULSE) Lab at Johns Hopkins University, is  
developing reflective artifact models with the aim of cleaning up ultrasound images. This, she says, 
“will certainly have large-scale impact, especially for patients known to produce poor-quality images.”
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machine learn-
ing, it will run 
automatically and 

be able to scan all 
26 million PubMed 

papers in a day.”

BENEFITS TO CANCER PATIENTS
Freed of their research responsibili-

ties, tumor boards will be able to offer 
precision cancer treatments to far more 
patients. “Instead of treating 100 cancer 
patients a year,” Dr. Poon speculated, 
“we may be able to help them treat 500 
a year or 1,000 a year or, eventually, 
10,000 a year.”

The impact could be dramatic: no 
more chemotherapy, today’s standard 
of care. Chemotherapy indiscriminately 
targets all cells in the body undergoing 
division — the time when they’re most 
vulnerable to attack. The idea is that 
because cancer cells divide far more fre-
quently than normal cells do, they would 
be disproportionately destroyed. Dr. 
Poon compares this approach to “carpet 
bombing,” because both methods pro-
duce “lots and lots of collateral damage.”

Each patient would receive a custom-
ized cancer treatment plan that specifies 
the best drug to target the genetic 
mutations driving the patient’s cancer. 
That’s critical, Dr. Poon added, because 
of what we now know about the true 
nature of cancer. “Cancer is caused by 
our normal cells’ DNA acquiring a bunch 
of mutations and then going haywire 
and growing infinitely … eventually 
becoming lethal.”

And, he explained, no single set of 
gene mutations causes cancer. “Every 
cancer, every tumor is different. When 
you compare cancers from two lung can-
cer patients, each might have a couple 
dozen mutations, but they might have 
almost no overlap in those mutations. 
So, they might actually be completely 
different diseases.”

Precision cancer treatments can 
achieve dramatic results. In 2001, when 
the first drug targeting the genetic 
mutation behind chronic Myelomal 

leukemia — a cancer of white blood cells 
— was introduced, survival rates tripled, 
from 30 percent to about 90 percent. 

PHASE TWO: PREDICTING THE BEST 
ONE-TWO PUNCH

Still, single drug treatments may not 
be enough, owing to genetic variability 
within tumors and to the incredible 
resilience of some cancer mutations to 
use gene-signaling pathways to devise 
workarounds to the drugs. After initial 
success, Dr. Poon said, “the cancer can 
come roaring back.”

To prevent this, the best strategy 
would be to develop a two-drug therapy 
plan that simultaneously attacks the 
cancer on multiple fronts. The best com-
binations create synergies in which the 
drugs perform better individually when 
prescribed together. But this creates a 
“combinational explosion,” which pres-
ents Dr. Poon’s team with an enormous 
computational and predictive challenge.

The hundreds of known cancer drugs 
that need to be evaluated in combina-
tion produce “tens of thousands of 
combinations, at least,” Dr. Poon said. 
But, to figure out the most promising of 
those combinations, he explained, you 
also must look at how they interact with 
the 20,000 genes in the human cancer 
genome. That puts the number 
of combinations to con-
sider in the trillions.

Dr. Poon and his 
team are using 
the research find-
ings culled from 
Literome, along 
with paired cancer 
drug research results 
from their collaborators 
at the Knight Cancer Center in Oregon, 
to develop their machine-learning net-
work’s predictive powers. Each round of 
anti-cancer drug test results takes two  
years to complete. Dr. Poon said several 
more iterations may be necessary to 
fully tune the machine-learning model 
and make Project Hanover ready for 
prime time.

“This is still in a completely research 
phase,” Dr. Poon said. “but there are 
promising signs that we probably are 
onto something meaningful.”

EXTREMELY FAST, EXTREMELY 
ACCURATE MEDICINE

Igor Barani, M.D., CEO of Enlitic, a 
San Francisco-based deep-learning and 
AI startup, was excited — and maybe 
a bit nervous. In a matter of days, he 
would unveil his company’s first two 
fully functional deep-learning-powered 
clinical decision support tools to 
radiologists at the Radiology Society of 
North America’s (RSNA) annual meet-
ing, in Chicago.

The stakes were high. The two 
products Dr. Barani would introduce — 
Patient Triage, an X-ray interpretation 
and sorting tool, and a computerized 
tomography (CT) lung screening scan 
that makes lung cancer detection more 
effective — represented the first in a 
series of deep-learning diagnostic tools 
that Enlitic expected would transform 
radiology practices. They would be ready 
for market once Enlitic applied for, and 
received, approval from the Food and 
Drug Administration.

Radiologists tended to react to the 
Enlitic AI systems in two ways: Though 
impressed with their capabilities, 
radiologists were either uncomfortable 

trusting findings from deep-learning 
networks whose inner workings 
remained mysteries, or they were 
fearful that these powerful tools 
might replace them.

“They’re seeing these networks 
do things that computers couldn’t 

do before,” said Dr. Barani, a radiol-
ogy oncologist in his own right. “So, 
there’s a tremendous level of anxiety.”

Dr. Barani said he hopes Enlitic’s 
decision support tools would ultimately 
win radiologists over because of their 
ability to increase the accuracy and 
speed of diagnoses and free radiologists 
to expand their practices.

To address the “black box” aspect 
of the technology, Enlitic has led the 
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industry in enhancing its products 
with interactive tools, such as heat map 
overlays, that highlight areas of interest 
on scans, lists of possible diagnoses, 
and probability scores indicating their 
likelihood. “We spend a lot of time 
figuring out how to help radiologists 
visualize the output of these networks,” 
Dr. Barani said, adding that those vi-
sualization tools help build trust in the 
networks’ findings.

Enlitic’s diagnostic products have 
impressive capabilities. The Patient Tri-
age tool not only can read and interpret 
chest X-rays, a first for any computer-
based application, but it can do it in 
milliseconds — about 10,000 times 
faster than a radiologist. The system 
stores normal X-rays and automatically 
generates patient reports. Meanwhile, 
it interprets the abnormal X-rays and 
routes them to a reading radiologist 
along with its findings.

Patient Triage was designed to enable 
radiology practices to process large vol-
umes of chest X-rays far more efficiently. 
(Chest X-rays are the most commonly 
used diagnostic images globally.) “We 

want to take the mundane out of their 
workflow,” Dr. Barani explained. “All the 
normal chest X-rays — they don’t really 
need to look at or could glance at them 
very quickly. It should be very helpful 
for them to know that our algorithm, 
when it took a pass at it, didn’t find 
anything. It can allow them to focus 
their skills on things that are complex, 
difficult to interpret, or that may require 
physician input.”

The second product Dr. Barani will 
introduce performs highly accurate and 
efficient lung cancer screenings. Each 
year, approximately 9 million Americans 
with prior histories of smoking become 
eligible for lung cancer screenings. Lung 
cancer is a highly lethal illness, claiming 
the lives of 80 to 90 percent of those di-
agnosed with it. It’s also one of the most 
difficult cancers to detect on a medical 
scan, leading radiologists to err on the 
side of caution. The false positive rate of 
diagnoses can be very high.

“They’re doing it for a good reason,” 
Dr. Barani said. “You don’t want to 
miss a nodule that might turn out to be 
malignant, no matter how small. But 

down the line, this leads to a lot of un-
necessary biopsies, which are invasive, 
very expensive, and that cause patients a 
tremendous amount of anxiety.”

Enlitic’s CT lung cancer screening 
tool reduces the likelihood of false 
positives. Its unique features, including 
a 3-D deep-learning engine, enable it to 
detect lung cancer extremely early. In 
benchmarked tests, it detected cancer 
nodules in chest CT scans 50 percent 
more accurately than an expert panel of 
thoracic radiologists.

The lung screening CT scan tool 
examines lung CT scans slice by slice 
in its search for nodules. When it finds 
one with potentially malignant imaging 
features, it can further characterize the 
nodule by extracting and comparing its 
features against comparable features in 
a database of hundreds of thousands of 
lung cancer cases. It also 
calculates a similarity 
score based on 
the degree that 
the nodule’s 
features match 
those from the 
database. That 
similarity score 
can then be used 
to estimate the risk 
of malignancy.

Dr. Barani had received considerable 
advance interest from radiologists who 
would be at the RSNA meeting. He said 
he expected to be in “nonstop meetings 
throughout the conference” and hoped 
to form new strategic partnerships and 
commercial commitments.

“I’m looking for partners who are will-
ing to deploy this technology, so we can 
explore, not just how it works in real, 
clinical settings, but consider different 
pricing models and help us understand 
the value we’re bringing to radiologists 
and hospitals.

“I think we’ll be able to achieve mas-
sive synergies for anybody who deploys 
our technology to meet the needs of 
their patient populations.” 

Igor Barani, M.D., CEO of Enlitic, right, with radiologist Ben Covington Jr. Of the screening tool he’s 
developed, Dr. Barani notes: “All the normal chest X-rays — they don’t really need to look at or could 
glance at them very quickly. It should be very helpful for them to know that our algorithm, when it 
took a pass at it, didn’t find anything. It can allow them to focus their skills on things that are complex, 
difficult to interpret, or that may require physician input.”


