
A machine learning approach to identifying point source
locations in photoacoustic data

Austin Reiter,a Muyinatu A. Lediju Bell*b,c

aDepartment of Computer Science, Johns Hopkins University, Baltimore, MD, USA
bDepartment of Electrical and Computer Engineering, Johns Hopkins University,

Baltimore, MD, USA
cDepartment of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA

ABSTRACT

Interventional applications of photoacoustic imaging often require visualization of point-like targets, including
the circular cross sectional tips of needles and catheters or the circular cross sectional views of small cylindrical
implants such as brachytherapy seeds. When these point-like targets are imaged in the presence of highly
echogenic structures, the resulting photoacoustic wave creates a reflection artifact that may appear as a true
signal. We propose to use machine learning principles to identify these type of noise artifacts for removal. A
convolutional neural network was trained to identify the location of individual point targets from pre-beamformed
data simulated with k-Wave to contain various medium sound speeds (1440-1640 m/s), target locations (5-25
mm), and absorber sizes (1-5 mm). Based on 2,412 randomly selected test images, the mean axial and lateral
point location errors were 0.28 mm and 0.37 mm, respectively, which can be regarded as the average imaging
system resolution for our trained network. This trained network successfully identified the location of two point
targets in a single image with mean axial and lateral errors of 2.6 mm and 2.1 mm, respectively. A true signal
and a corresponding reflection artifact were then simulated. The same trained network identified the location
of the artifact with mean axial and lateral errors of 2.1 mm and 3.0 mm, respectively. Identified artifacts
may be rejected based on wavefront shape differences. These results demonstrate strong promise to identify
point targets without requiring traditional geometry-based beamforming, leading to the eventual elimination of
reflection artifacts from interventional images.

1. INTRODUCTION

Photoacoustic image quality is highly dependent on the quality of the beamforming process. Historically,
beamformers have treated acoustic wave propagation as a geometry-based, time-of-flight measurement that
accounts for signal time of arrival differences. However, these time-of-flight measurements do not consider that
signals can be reflected multiple times and each acoustic reflection will be measured by the ultrasound transducer,
thereby mapping reverberant signals to the wrong location. Two examples of interventional applications where
acoustic reflections are a significant impediment to progress and clinical translation include the identification of
brachytherapy seeds for treating prostate cancer1,2 and the guidance of minimally invasive surgeries to avoid
critical structures hidden by bone.3,4

Several methods are being developed to remove photoacoustic artifacts and enhance photoacoustic signals,
including methods that incorporate singular value decomposition5 and short-lag spatial coherence.6 However,
these approaches still rely on the same geometry-based, time-of-flight measurements as those of historical beam-
formers, and therefore similarly fail in the presence strong artifacts caused by bright, hyperechoic reflectors. A
method named photoacoustic-guided focused ultrasound (PAFUSion)7 was recently developed to address this
challenge by using ultrasound data to mimic the wavefields produced by photoacoustic sources and thereby
identify reflection artifacts for removal. This method depends on the assumption of identical acoustic reception
pathways for ultrasound and photoacoustic data, which is not always true. In addition to the multiple paths that
an acoustic signal can take once it encounters a strong reflector, there are multiple variables that govern acoustic
wave propagation and the associated time-of-flight, such as tissue properties (e.g. sound speed, attenuation,
absorption), tissue type (e.g. fat, bone, muscle), tissue thickness, and refraction.
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Deep learning, particularly deep learning with convolutional neural networks (CNNs), has in recent years
redefined the state-of-the-art in computer vision and machine learning,8–10 emerging as a quintessential technique
to train models from a large database of possibilities, representing a characteristic that is ideally suited and
uniquely applicable to the beamforming process. For example, although CNNs have only recently come to
fruition, neural networks date back even further, and Nikoonahad et al.11 used neural networks to remove
artifacts in ultrasound images by estimating delay functions based on time-of-flight information. While this
approach targets artifacts caused by sound speed estimation errors, it does not address the severely problematic
artifacts caused by acoustic reflections.

We are developing deep learning methods to remove the reflection artifacts often seen in interventional pho-
toacoustic imaging by eliminating receive beamforming and replacing it with a novel approach that uses CNNs.
This approach is based on the observation that signals from point sources located at the same depth generally
have similar wavefront shapes, regardless of the surrounding medium properties. The first step toward using
machine learning to remove reflection artifacts is to accurately identify these point source locations. Toward this
end, we trained a CNN to identify point source locations using simulated data. We then applied the trained net-
work to an independent set of simulated data containing point sources and reflection artifacts, and additionally
tested our trained CNN with real experimental data. The resulting point source locations may either be dis-
played separately or overlaid on co-registered ultrasound, CT, and/or MRI images, which are common imaging
modalities for image-guided interventions and surgical navigation. The results may additionally be overlaid on
photoacoustic images displayed with more traditional beamforming methods. To the authors’ knowledge, this
work represents the first application of machine learning to photoacoustic beamforming.

2. METHODS

We trained our CNN using simulated photoacoustic channel data and the widely available AlexNet network
architecture.8 The photoacoustic channel data was created with k-Wave simulations12,13 and regarded as an input
image. A total of 24,120 input images containing various point locations (axial range: 5-20 mm, lateral range:
5-25 mm, increment: 5 mm), various surrounding medium sound speeds (range: 1440-1640 m/s, increment: 1
m/s) causing known errors in the point location, and various point target radii (range: 1-5 mm, increment: 1
mm) were created in simulation. These images were randomly split into training (80%), validation (10%), and
test (10%) sets. The output of the algorithm contained the point target 2D location in images created under these
conditions, as illustrated in Fig. 1. The steps taken to achieve the 2D point location included nonlinearity with
rectified linear units, max pooling, and regression with L2 normalization. The simulated photoacoustic images
were divided into training and test sets. The trained network was applied to the test set of the simulated k-Wave
photoacoustic data as well as to experimental data from a 3-mm diameter vessel-mimicking target obtained from
a previous experiment using a pulsed laser diode.14

Figure 1: A convolutional neural network was trained to relate pre-beamformed acoustic data to point source
locations.
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3. RESULTS & DISCUSSION

3.1 One Simulated Source

The results of 2,412 test set images revealed that the average point location error was 0.28 mm and 0.37
mm in the axial and lateral dimensions, respectively. The mean errors generally decreased as axial and lateral
distance increased, as illustrated with the box-whisker plots of Fig. 2. The top and bottom of each box represents
the 75th and 25th percentiles of the measurements, respectively. The line inside each box represents the median
measurement, and the whiskers (i.e., lines extending above and below each box) represent the range. Outliers
were defined as any value greater than 1.5 times the interquartile range and are displayed as dots.

The errors reported in Fig. 2 can be regarded as the resolution of our imaging system when the known
variation in sound speed ranges from 1440-1640 m/s and the known variation in target size ranges from 1-5 mm.
With the traditional beamforming assumption of a fixed 1540 m/s sound speed, a medium known to consist of
sound speeds within ±100 m/s of the assumed sound speed would cause the traditional images to have sound
speed errors that equate to maximum distance errors of 6.5%. Thus, the maximum expected axial distance errors
for this range of sound speeds is 0.3-1.3 mm (for the range of axial depths investigated), which is larger than the
defined axial error with our imaging approach (Fig. 2(a)), particularly at the larger axial depths.

These results suggest that the proposed algorithm has excellent potential to detect points in the presence
of clutter and other artifacts caused by speed of sound errors from multiple tissue layers. Once the network
is trained, a point can be located at a frame rate of approximately 60 Hz when running this algorithm on our
NVIDIA TITAN Black GPU.

(a) (b)

Figure 2: Summary of point location errors obtained with the trained CNN in the (a) axial and (b) lateral
dimensions of the image.

3.2 Two Simulated Sources

To investigate the feasibility of detecting more than one point source in a single image, our trained CNN
was applied to 20 images containing two signal sources. Our trained CNN successfully identified the source
locations with mean axial and lateral errors of 2.6 mm and 2.1 mm, respectively. Because the network was only
trained to detect single point sources, it is remarkable that we detected the location of more than one source in a
single image. To achieve this detection, we noticed that the network was biased toward detecting the right-most
wavefield. Thus, as demonstrated in Fig. 3 (top), the images were first input as normal (Input 1), then flipped
from left to right, and the flipped image was treated as a new input (Input 2).

A true signal and a corresponding reflection artifact were then simulated in 20 images, as demonstrated in
Fig. 3 (bottom). Note that the two wavefronts have different shapes, although they appear at the same depth,
which indicates that one of these wavefronts originates from an artifact. The approach described above was used
to identify the location of the simulated reflection artifact with mean axial and lateral errors of 2.1 mm and
3.0 mm, respectively. Although our trained CNN identified the locations of both the sources and the reflection
artifacts with similar accuracy, it was unable to differentiate true signals from artifacts because it was not yet
trained to detect these differences, although this is the end goal of the proposed technique.
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Figure 3: Examples of two point sources in a single image.

3.3 Artifact Detection

One possible approach to differentiate artifacts from true signals is to feed the identified locations of these
two wavefields as inputs into an independent k-Wave simulation, then compare the resulting wavefields to those
of the original image. Artifacts may then be rejected based on wavefront shape differences because our CNN
will be trained to identify the locations of all true and reflected wavefields. This approach is reasonable because
artifacts tend to manifest as obviously different wavefield shapes from true signals when they appear at an
incorrect depth. One option to make this distinction is demonstrated in Fig. 4 where we analyze the shape of
the waves at the peak location and construct histograms of the axial positions of the wavefield raw data (i.e. the
image y-coordinates). Because our CNN is trained to predict the wavefield locations of both true signals and
artifacts, we can reasonably train a classifier to distinguish between these two cases.

Figure 4: Demonstration of a histogram-based wavefield shape matching technique. The histogram shows the
axial location of the wavefield segments in the dashed boxes. Note the differences when comparing the histogram
of the true wave (top) to that of the artifact (bottom).

3.4 Application to Experimental Data

To demonstrate that our approach has broad applicability to multiple types of data, we tested our trained
CNN on experimental data, which has differing characteristics when compared to simulated data. These differ-
ences can be appreciated by comparing Fig. 5 with Fig. 3. Note the noisier background, the incomplete wavefield
arc, and the nonuniform signal intensities across the wavefield in Fig. 5, which shows the raw channel data from
a 3-mm diameter rod submerged in water.14 The axial and lateral positions of the rod with respect to the left
corner of the ultrasound probe (which corresponds to the upper left corner of the photoacoustic image) was 6
mm and 11 mm, respectively. Our trained CNN estimated these positions within ∼2 mm in each dimension,
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Figure 5: Experimental data from a 3 mm diameter blood vessel phantom.

identifying the point source locations as 4.21 mm (axial) and 13.01 mm (lateral). This estimation is within the
errors obtained with this network, as reported in Section 3.2.

The error is larger than that obtained with the single source results (Fig. 2) likely due to the partiality of the
wavefield, which has a similar appearance to one side of the full wavefield observed when two wavefields overlap
(Fig. 3). Although additional training with partial wavefields might be required to reduce the error, this result
highlights the potential for our approach to be trained with simulated data, then implemented to identify point
locations in experimental data.

4. CONCLUSION

This work represents the first demonstration of machine learning applied to photoacoustic data visualization.
We trained a CNN using simulated parameters (i.e. 2D point target positions, medium sound speeds, and target
radii) to predict realistic image formation parameters directly from raw, pre-beamformed data. Our preliminary
results demonstrate the feasibility of the proposed approach, and future work will test alternative CNNs that
are trained to detect multiple point sources, partial wavefields, and identify artifacts for removal.
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